mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-26 21:24:27 +00:00
Fix typos (#14800)
This commit is contained in:
parent
de12ece0aa
commit
78ec762aac
@ -10,7 +10,7 @@
|
||||
|
||||
#define PADDLE_WITH_CUDA
|
||||
#define CHECK_INPUT_SAME(x1, x2) \
|
||||
PD_CHECK(x1.place() == x2.place(), "input must be smae pacle.")
|
||||
PD_CHECK(x1.place() == x2.place(), "input must be same place.")
|
||||
#define CHECK_INPUT_CPU(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")
|
||||
|
||||
template <typename T> struct PreCalc {
|
||||
|
@ -1026,14 +1026,14 @@ class CTCDKDLoss(nn.Layer):
|
||||
pred_student = F.softmax(logits_student / self.temperature, axis=-1)
|
||||
pred_teacher = F.softmax(logits_teacher / self.temperature, axis=-1)
|
||||
|
||||
# differents with dkd
|
||||
# differences with dkd
|
||||
pred_student = paddle.mean(pred_student, axis=1)
|
||||
pred_teacher = paddle.mean(pred_teacher, axis=1)
|
||||
|
||||
pred_student = self._cat_mask(pred_student, gt_mask, other_mask)
|
||||
pred_teacher = self._cat_mask(pred_teacher, gt_mask, other_mask)
|
||||
|
||||
# differents with dkd
|
||||
# differences with dkd
|
||||
tckd_loss = self.kl_loss(pred_student, pred_teacher)
|
||||
|
||||
gt_mask_ex = paddle.expand_as(gt_mask.unsqueeze(axis=1), logits_teacher)
|
||||
@ -1043,11 +1043,11 @@ class CTCDKDLoss(nn.Layer):
|
||||
pred_student_part2 = F.softmax(
|
||||
logits_student / self.temperature - 1000.0 * gt_mask_ex, axis=-1
|
||||
)
|
||||
# differents with dkd
|
||||
# differences with dkd
|
||||
pred_teacher_part2 = paddle.mean(pred_teacher_part2, axis=1)
|
||||
pred_student_part2 = paddle.mean(pred_student_part2, axis=1)
|
||||
|
||||
# differents with dkd
|
||||
# differences with dkd
|
||||
nckd_loss = self.kl_loss(pred_student_part2, pred_teacher_part2)
|
||||
loss = self.alpha * tckd_loss + self.beta * nckd_loss
|
||||
return loss
|
||||
|
@ -36,7 +36,7 @@ class BaseModel(nn.Layer):
|
||||
model_type = config["model_type"]
|
||||
# build transform,
|
||||
# for rec, transform can be TPS,None
|
||||
# for det and cls, transform shoule to be None,
|
||||
# for det and cls, transform should to be None,
|
||||
# if you make model differently, you can use transform in det and cls
|
||||
if "Transform" not in config or config["Transform"] is None:
|
||||
self.use_transform = False
|
||||
|
@ -228,7 +228,7 @@ class MbConvBlock(nn.Layer):
|
||||
x = F.sigmoid(x_squeezed) * x
|
||||
x = self._bn2(self._project_conv(x))
|
||||
|
||||
# skip conntection and drop connect
|
||||
# skip connection and drop connect
|
||||
if self.id_skip and self._block_args.stride == 1 and self.inp == self.final_oup:
|
||||
if drop_connect_rate:
|
||||
x = self._drop_connect(x, p=drop_connect_rate, training=self.training)
|
||||
|
@ -521,7 +521,7 @@ class TheseusLayer(nn.Layer):
|
||||
return_patterns = [stages_pattern[i] for i in return_stages]
|
||||
|
||||
if return_patterns:
|
||||
# call update_res function after the __init__ of the object has completed execution, that is, the contructing of layer or model has been completed.
|
||||
# call update_res function after the __init__ of the object has completed execution, that is, the constructing of layer or model has been completed.
|
||||
def update_res_hook(layer, input):
|
||||
self.update_res(return_patterns)
|
||||
|
||||
@ -680,7 +680,7 @@ class TheseusLayer(nn.Layer):
|
||||
|
||||
res = self.upgrade_sublayer(layer_name, stop_grad)
|
||||
if len(res) == 0:
|
||||
msg = "Failed to stop the gradient befor the layer named '{layer_name}'"
|
||||
msg = "Failed to stop the gradient before the layer named '{layer_name}'"
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -734,12 +734,12 @@ def save_sub_res_hook(layer, input, output):
|
||||
def set_identity(
|
||||
parent_layer: nn.Layer, layer_name: str, layer_index_list: str = None
|
||||
) -> bool:
|
||||
"""set the layer specified by layer_name and layer_index_list to Indentity.
|
||||
"""set the layer specified by layer_name and layer_index_list to Identity.
|
||||
|
||||
Args:
|
||||
parent_layer (nn.Layer): The parent layer of target layer specified by layer_name and layer_index_list.
|
||||
layer_name (str): The name of target layer to be set to Indentity.
|
||||
layer_index_list (str, optional): The index of target layer to be set to Indentity in parent_layer. Defaults to None.
|
||||
layer_name (str): The name of target layer to be set to Identity.
|
||||
layer_index_list (str, optional): The index of target layer to be set to Identity in parent_layer. Defaults to None.
|
||||
|
||||
Returns:
|
||||
bool: True if successfully, False otherwise.
|
||||
@ -775,7 +775,7 @@ def parse_pattern_str(
|
||||
"""parse the string type pattern.
|
||||
|
||||
Args:
|
||||
pattern (str): The pattern to discribe layer.
|
||||
pattern (str): The pattern to describe layer.
|
||||
parent_layer (nn.Layer): The root layer relative to the pattern.
|
||||
|
||||
Returns:
|
||||
@ -806,7 +806,7 @@ def parse_pattern_str(
|
||||
target_layer = getattr(parent_layer, target_layer_name, None)
|
||||
|
||||
if target_layer is None:
|
||||
msg = f"Not found layer named('{target_layer_name}') specifed in pattern('{pattern}')."
|
||||
msg = f"Not found layer named('{target_layer_name}') specified in pattern('{pattern}')."
|
||||
return None
|
||||
|
||||
if target_layer_index_list:
|
||||
@ -814,7 +814,7 @@ def parse_pattern_str(
|
||||
if int(target_layer_index) < 0 or int(target_layer_index) >= len(
|
||||
target_layer
|
||||
):
|
||||
msg = f"Not found layer by index('{target_layer_index}') specifed in pattern('{pattern}'). The index should < {len(target_layer)} and > 0."
|
||||
msg = f"Not found layer by index('{target_layer_index}') specified in pattern('{pattern}'). The index should < {len(target_layer)} and > 0."
|
||||
return None
|
||||
target_layer = target_layer[target_layer_index]
|
||||
|
||||
|
@ -78,10 +78,10 @@ class BCNLanguage(nn.Layer):
|
||||
embed = self.token_encoder(embed) # (B, N, C)
|
||||
padding_mask = _get_mask(lengths, self.max_length)
|
||||
zeros = paddle.zeros_like(embed) # (B, N, C)
|
||||
qeury = self.pos_encoder(zeros)
|
||||
query = self.pos_encoder(zeros)
|
||||
for decoder_layer in self.decoder:
|
||||
qeury = decoder_layer(qeury, embed, cross_mask=padding_mask)
|
||||
output = qeury # (B, N, C)
|
||||
query = decoder_layer(query, embed, cross_mask=padding_mask)
|
||||
output = query # (B, N, C)
|
||||
|
||||
logits = self.cls(output) # (B, N, C)
|
||||
|
||||
@ -246,7 +246,7 @@ class ABINetHead(nn.Layer):
|
||||
lengths = align_lengths
|
||||
lengths = paddle.clip(
|
||||
lengths, 2, self.max_length
|
||||
) # TODO:move to langauge model
|
||||
) # TODO:move to language model
|
||||
l_feature, l_logits = self.language(tokens, lengths)
|
||||
|
||||
# alignment
|
||||
|
@ -216,7 +216,7 @@ class AttentionRecognitionHead(nn.Layer):
|
||||
)
|
||||
state = paddle.index_select(state, index=predecessors.squeeze(), axis=1)
|
||||
|
||||
# Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
|
||||
# Update sequence scores and erase scores for <eos> symbol so that they aren't expanded
|
||||
stored_scores.append(sequence_scores.clone())
|
||||
y_prev = paddle.reshape(y_prev, shape=[-1, 1])
|
||||
eos_prev = paddle.full_like(y_prev, fill_value=eos)
|
||||
|
@ -23,7 +23,7 @@ from paddle.nn.initializer import XavierNormal as xavier_normal_
|
||||
|
||||
|
||||
class Transformer(nn.Layer):
|
||||
"""A transformer model. User is able to modify the attributes as needed. The architechture
|
||||
"""A transformer model. User is able to modify the attributes as needed. The architecture
|
||||
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
||||
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
||||
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
||||
|
@ -386,7 +386,7 @@ class ParseQHead(nn.Layer):
|
||||
)
|
||||
logits = self.head(tgt_out)
|
||||
|
||||
# transfer to probility
|
||||
# transfer to probability
|
||||
logits = F.softmax(logits, axis=-1)
|
||||
|
||||
final_output = {"predict": logits}
|
||||
|
@ -990,7 +990,7 @@ class PPFormulaNet_Head(UniMERNetHead):
|
||||
if isinstance(decoder_start_token_id, list):
|
||||
if len(decoder_start_token_id) != batch_size:
|
||||
raise ValueError(
|
||||
f"`decoder_start_token_id` expcted to have length {batch_size} but got {len(decoder_start_token_id)}"
|
||||
f"`decoder_start_token_id` expected to have length {batch_size} but got {len(decoder_start_token_id)}"
|
||||
)
|
||||
decoder_input_ids_start = paddle.to_tensor(
|
||||
decoder_start_token_id,
|
||||
|
@ -183,7 +183,7 @@ class GSRM(nn.Layer):
|
||||
# ===== GSRM Semantic reasoning block =====
|
||||
"""
|
||||
This module is achieved through bi-transformers,
|
||||
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
|
||||
ngram_feature1 is the forward one, ngram_fetaure2 is the backward one
|
||||
"""
|
||||
pad_idx = self.char_num
|
||||
|
||||
|
@ -2175,7 +2175,7 @@ class UniMERNetHead(nn.Layer):
|
||||
if isinstance(decoder_start_token_id, list):
|
||||
if len(decoder_start_token_id) != batch_size:
|
||||
raise ValueError(
|
||||
f"`decoder_start_token_id` expcted to have length {batch_size} but got {len(decoder_start_token_id)}"
|
||||
f"`decoder_start_token_id` expected to have length {batch_size} but got {len(decoder_start_token_id)}"
|
||||
)
|
||||
decoder_input_ids_start = paddle.to_tensor(
|
||||
decoder_start_token_id,
|
||||
|
@ -218,7 +218,7 @@ class Transformer_Encoder(nn.Layer):
|
||||
self.layer_norm = nn.LayerNorm(d_model, epsilon=1e-6)
|
||||
|
||||
def forward(self, enc_output, src_mask, return_attns=False):
|
||||
enc_output = self.dropout(self.position_enc(enc_output)) # position embeding
|
||||
enc_output = self.dropout(self.position_enc(enc_output)) # position embedding
|
||||
for enc_layer in self.layer_stack:
|
||||
enc_output = enc_layer(enc_output, slf_attn_mask=src_mask)
|
||||
enc_output = self.layer_norm(enc_output)
|
||||
|
@ -154,7 +154,7 @@ class TableMasterHead(nn.Layer):
|
||||
|
||||
class DecoderLayer(nn.Layer):
|
||||
"""
|
||||
Decoder is made of self attention, srouce attention and feed forward.
|
||||
Decoder is made of self attention, source attention and feed forward.
|
||||
"""
|
||||
|
||||
def __init__(self, headers, d_model, dropout, d_ff):
|
||||
|
@ -115,7 +115,7 @@ class TPSSpatialTransformer(nn.Layer):
|
||||
# compute inverse matrix
|
||||
inverse_kernel = paddle.inverse(forward_kernel)
|
||||
|
||||
# create target cordinate matrix
|
||||
# create target coordinate matrix
|
||||
HW = self.target_height * self.target_width
|
||||
target_coordinate = list(
|
||||
itertools.product(range(self.target_height), range(self.target_width))
|
||||
|
@ -61,7 +61,7 @@ class SASTPostProcess(object):
|
||||
"""
|
||||
Transfer vertical point_pairs into poly point in clockwise.
|
||||
"""
|
||||
# constract poly
|
||||
# construct poly
|
||||
point_num = len(point_pair_list) * 2
|
||||
point_list = [0] * point_num
|
||||
for idx, point_pair in enumerate(point_pair_list):
|
||||
|
@ -464,12 +464,12 @@ class APP_Image2Doc(QWidget):
|
||||
# Must set image path list and language before start
|
||||
self.output_dir = os.path.join(
|
||||
os.path.dirname(self.imagePaths[0]), "output"
|
||||
) # output_dir shold be same as imagepath
|
||||
) # output_dir should be same as imagepath
|
||||
self._thread.setOutputDir(self.output_dir)
|
||||
self._thread.setImagePath(self.imagePaths)
|
||||
self._thread.setLang(lang)
|
||||
self._thread.setPDFParser(pdfParser)
|
||||
# disenble buttons
|
||||
# disable buttons
|
||||
self.openFileButton.setEnabled(False)
|
||||
self.startCNButton.setEnabled(False)
|
||||
self.startENButton.setEnabled(False)
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
conver table label to html
|
||||
convert table label to html
|
||||
"""
|
||||
|
||||
import json
|
||||
@ -84,7 +84,7 @@ def convert(origin_gt_path, save_path):
|
||||
for img_name, gt in tqdm(data_dict.items()):
|
||||
html = gen_html(gt)
|
||||
save_pred_txt(img_name, html, save_path)
|
||||
print("conver finish")
|
||||
print("convert finish")
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -112,7 +112,7 @@ class TEDS(object):
|
||||
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
|
||||
assert isinstance(n_jobs, int) and (
|
||||
n_jobs >= 1
|
||||
), "n_jobs must be an integer greather than 1"
|
||||
), "n_jobs must be an integer greater than 1"
|
||||
self.structure_only = structure_only
|
||||
self.n_jobs = n_jobs
|
||||
self.ignore_nodes = ignore_nodes
|
||||
|
@ -64,7 +64,7 @@ class DecodeImage(object):
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
"""normalize image such as substract mean, divide std"""
|
||||
"""normalize image such as subtract mean, divide std"""
|
||||
|
||||
def __init__(self, scale=None, mean=None, std=None, order="chw", **kwargs):
|
||||
if isinstance(scale, str):
|
||||
|
@ -24,7 +24,7 @@ def create_metric(
|
||||
mode(str): mode, train/valid
|
||||
|
||||
Returns:
|
||||
fetchs(dict): dict of measures
|
||||
fetches(dict): dict of measures
|
||||
"""
|
||||
# if architecture["name"] == "GoogLeNet":
|
||||
# assert len(out) == 3, "GoogLeNet should have 3 outputs"
|
||||
@ -35,10 +35,10 @@ def create_metric(
|
||||
# out = out[1]
|
||||
softmax_out = F.softmax(out)
|
||||
|
||||
fetchs = OrderedDict()
|
||||
# set top1 to fetchs
|
||||
fetches = OrderedDict()
|
||||
# set top1 to fetches
|
||||
top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
|
||||
# set topk to fetchs
|
||||
# set topk to fetches
|
||||
k = min(topk, classes_num)
|
||||
topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
|
||||
|
||||
@ -53,8 +53,8 @@ def create_metric(
|
||||
/ paddle.distributed.get_world_size()
|
||||
)
|
||||
|
||||
fetchs["top1"] = top1
|
||||
fetches["top1"] = top1
|
||||
topk_name = "top{}".format(k)
|
||||
fetchs[topk_name] = topk
|
||||
fetches[topk_name] = topk
|
||||
|
||||
return fetchs
|
||||
return fetches
|
||||
|
@ -282,7 +282,7 @@ def create_predictor(args, mode, logger):
|
||||
workspace_size=1 << 30,
|
||||
precision_mode=precision,
|
||||
max_batch_size=args.max_batch_size,
|
||||
min_subgraph_size=args.min_subgraph_size, # skip the minmum trt subgraph
|
||||
min_subgraph_size=args.min_subgraph_size, # skip the minimum trt subgraph
|
||||
use_calib_mode=False,
|
||||
)
|
||||
|
||||
|
@ -71,7 +71,7 @@ class NaiveSyncBatchNorm(nn.BatchNorm2D):
|
||||
mean, meansqr = paddle.split(vec, [C, C])
|
||||
momentum = (
|
||||
1 - self._momentum
|
||||
) # NOTE: paddle has reverse momentum defination
|
||||
) # NOTE: paddle has reverse momentum definition
|
||||
else:
|
||||
if B == 0:
|
||||
vec = paddle.zeros([2 * C + 1], dtype=mean.dtype)
|
||||
|
Loading…
x
Reference in New Issue
Block a user