mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-08-16 04:27:24 +00:00
[doc] Add nrtr and svtr en docs.
This commit is contained in:
parent
9b1e82727b
commit
a340d95b9b
@ -81,7 +81,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
# 注意将pretrained_model的路径设置为本地路径。
|
# 注意将pretrained_model的路径设置为本地路径。
|
||||||
python3 tools/eval.py -c ./rec_svtr_tiny_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
python3 tools/eval.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
||||||
```
|
```
|
||||||
|
|
||||||
<a name="3-3"></a>
|
<a name="3-3"></a>
|
||||||
@ -90,7 +90,7 @@ python3 tools/eval.py -c ./rec_svtr_tiny_en_train/rec_svtr_tiny_6local_6global_s
|
|||||||
使用如下命令进行单张图片预测:
|
使用如下命令进行单张图片预测:
|
||||||
```shell
|
```shell
|
||||||
# 注意将pretrained_model的路径设置为本地路径。
|
# 注意将pretrained_model的路径设置为本地路径。
|
||||||
python3 tools/infer_rec.py -c ./rec_svtr_tiny_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
python3 tools/infer_rec.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
||||||
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
|
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -104,7 +104,7 @@ python3 tools/infer_rec.py -c ./rec_svtr_tiny_en_train/rec_svtr_tiny_6local_6glo
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
# 注意将pretrained_model的路径设置为本地路径。
|
# 注意将pretrained_model的路径设置为本地路径。
|
||||||
python3 tools/export_model.py -c ./rec_svtr_tiny_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy Global.save_inference_dir=./inference/rec_svtr_tiny_stn_en
|
python3 tools/export_model.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy Global.save_inference_dir=./inference/rec_svtr_tiny_stn_en
|
||||||
```
|
```
|
||||||
|
|
||||||
**注意:**
|
**注意:**
|
||||||
@ -158,4 +158,4 @@ Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999998807907104)
|
|||||||
<a name="5"></a>
|
<a name="5"></a>
|
||||||
## 5. FAQ
|
## 5. FAQ
|
||||||
|
|
||||||
1. 由于`SVTR`使用的op算子大多为矩阵相乘,在GPU环境下,速度具有优势,但在CPU开启mkldnn加速环境下,`SVTR`相比于被优化的卷积网络没有优势。
|
1. 由于`SVTR`使用的算子大多为矩阵相乘,在GPU环境下,速度具有优势,但在CPU开启mkldnn加速环境下,`SVTR`相比于被优化的卷积网络没有优势。
|
||||||
|
135
doc/doc_en/algorithm_rec_nrtr_en.md
Normal file
135
doc/doc_en/algorithm_rec_nrtr_en.md
Normal file
@ -0,0 +1,135 @@
|
|||||||
|
# NRTR
|
||||||
|
|
||||||
|
- [1. Introduction](#1)
|
||||||
|
- [2. Environment](#2)
|
||||||
|
- [3. Model Training / Evaluation / Prediction](#3)
|
||||||
|
- [3.1 Training](#3-1)
|
||||||
|
- [3.2 Evaluation](#3-2)
|
||||||
|
- [3.3 Prediction](#3-3)
|
||||||
|
- [4. Inference and Deployment](#4)
|
||||||
|
- [4.1 Python Inference](#4-1)
|
||||||
|
- [4.2 C++ Inference](#4-2)
|
||||||
|
- [4.3 Serving](#4-3)
|
||||||
|
- [4.4 More](#4-4)
|
||||||
|
- [5. FAQ](#5)
|
||||||
|
|
||||||
|
<a name="1"></a>
|
||||||
|
## 1. Introduction
|
||||||
|
|
||||||
|
Paper:
|
||||||
|
> [NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition](https://arxiv.org/abs/1806.00926)
|
||||||
|
> Fenfen Sheng and Zhineng Chen and Bo Xu
|
||||||
|
> ICDAR, 2019
|
||||||
|
|
||||||
|
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|
||||||
|
|
||||||
|
|Model|Backbone|config|Acc|Download link|
|
||||||
|
| --- | --- | --- | --- | --- |
|
||||||
|
|NRTR|MTB|[rec_mtb_nrtr.yml](../../configs/rec/rec_mtb_nrtr.yml)|84.21%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar)|
|
||||||
|
|
||||||
|
<a name="2"></a>
|
||||||
|
## 2. Environment
|
||||||
|
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
|
||||||
|
|
||||||
|
|
||||||
|
<a name="3"></a>
|
||||||
|
## 3. Model Training / Evaluation / Prediction
|
||||||
|
|
||||||
|
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||||
|
|
||||||
|
Training:
|
||||||
|
|
||||||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
#Single GPU training (long training period, not recommended)
|
||||||
|
python3 tools/train.py -c configs/rec/rec_mtb_nrtr.yml
|
||||||
|
|
||||||
|
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_mtb_nrtr.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
Evaluation:
|
||||||
|
|
||||||
|
```
|
||||||
|
# GPU evaluation
|
||||||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||||
|
```
|
||||||
|
|
||||||
|
Prediction:
|
||||||
|
|
||||||
|
```
|
||||||
|
# The configuration file used for prediction must match the training
|
||||||
|
python3 tools/infer_rec.py -c configs/rec/rec_mtb_nrtr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy
|
||||||
|
```
|
||||||
|
|
||||||
|
<a name="4"></a>
|
||||||
|
## 4. Inference and Deployment
|
||||||
|
|
||||||
|
<a name="4-1"></a>
|
||||||
|
### 4.1 Python Inference
|
||||||
|
First, the model saved during the NRTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar)) ), you can use the following command to convert:
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 tools/export_model.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy Global.save_inference_dir=./inference/rec_mtb_nrtr
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note:**
|
||||||
|
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
|
||||||
|
- If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file.
|
||||||
|
|
||||||
|
After the conversion is successful, there are three files in the directory:
|
||||||
|
```
|
||||||
|
/inference/rec_mtb_nrtr/
|
||||||
|
├── inference.pdiparams
|
||||||
|
├── inference.pdiparams.info
|
||||||
|
└── inference.pdmodel
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
For NRTR text recognition model inference, the following commands can be executed:
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_mtb_nrtr/' --rec_algorithm='NRTR' --rec_image_shape='1,32,100' --rec_char_dict_path='./ppocr/utils/EN_symbol_dict.txt'
|
||||||
|
```
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
|
||||||
|
The result is as follows:
|
||||||
|
```shell
|
||||||
|
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901)
|
||||||
|
```
|
||||||
|
|
||||||
|
<a name="4-2"></a>
|
||||||
|
### 4.2 C++ Inference
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="4-3"></a>
|
||||||
|
### 4.3 Serving
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="4-4"></a>
|
||||||
|
### 4.4 More
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="5"></a>
|
||||||
|
## 5. FAQ
|
||||||
|
|
||||||
|
1. In the `NRTR` paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.
|
||||||
|
|
||||||
|
## Citation
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@article{Sheng2019NRTR,
|
||||||
|
author = {Fenfen Sheng and Zhineng Chen andBo Xu},
|
||||||
|
title = {NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
|
||||||
|
journal = {ICDAR},
|
||||||
|
year = {2019},
|
||||||
|
url = {http://arxiv.org/abs/1806.00926},
|
||||||
|
pages = {781-786}
|
||||||
|
}
|
||||||
|
```
|
133
doc/doc_en/algorithm_rec_svtr_en.md
Normal file
133
doc/doc_en/algorithm_rec_svtr_en.md
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
# SVTR
|
||||||
|
|
||||||
|
- [1. Introduction](#1)
|
||||||
|
- [2. Environment](#2)
|
||||||
|
- [3. Model Training / Evaluation / Prediction](#3)
|
||||||
|
- [3.1 Training](#3-1)
|
||||||
|
- [3.2 Evaluation](#3-2)
|
||||||
|
- [3.3 Prediction](#3-3)
|
||||||
|
- [4. Inference and Deployment](#4)
|
||||||
|
- [4.1 Python Inference](#4-1)
|
||||||
|
- [4.2 C++ Inference](#4-2)
|
||||||
|
- [4.3 Serving](#4-3)
|
||||||
|
- [4.4 More](#4-4)
|
||||||
|
- [5. FAQ](#5)
|
||||||
|
|
||||||
|
<a name="1"></a>
|
||||||
|
## 1. Introduction
|
||||||
|
|
||||||
|
Paper:
|
||||||
|
> [SVTR: Scene Text Recognition with a Single Visual Model]()
|
||||||
|
> Yongkun Du and Zhineng Chen and Caiyan Jia Xiaoting Yin and Tianlun Zheng and Chenxia Li and Yuning Du and Yu-Gang Jiang
|
||||||
|
> IJCAI, 2022
|
||||||
|
|
||||||
|
<a name="model"></a>
|
||||||
|
The accuracy (%) and model files of SVTR on the public dataset of scene text recognition are as follows:
|
||||||
|
* Chinese dataset from [Chinese Benckmark](https://arxiv.org/abs/2112.15093) , The Chinese training evaluation strategy of SVTR follows the paper.
|
||||||
|
|
||||||
|
| Model |IC13<br/>857 | SVT |IIIT5k<br/>3000 |IC15<br/>1811| SVTP |CUTE80 | Avg_6 |IC15<br/>2077 |IC13<br/>1015 |IC03<br/>867|IC03<br/>860|Avg_10 | Chinese<br/>scene_test| Download link |
|
||||||
|
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|:-----:|:-----:|:---------------------------------------------:|:-----:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
||||||
|
| SVTR Tiny | 96.85 | 91.34 | 94.53 | 83.99 | 85.43 | 89.24 | 90.87 | 80.55 | 95.37 | 95.27 | 95.70 | 90.13 | 67.90 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_ch_train.tar) |
|
||||||
|
| SVTR Small | 95.92 | 93.04 | 95.03 | 84.70 | 87.91 | 92.01 | 91.63 | 82.72 | 94.88 | 96.08 | 96.28 | 91.02 | 69.00 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_small_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_small_none_ctc_ch_train.tar) |
|
||||||
|
| SVTR Base | 97.08 | 91.50 | 96.03 | 85.20 | 89.92 | 91.67 | 92.33 | 83.73 | 95.66 | 95.62 | 95.81 | 91.61 | 71.40 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_base_none_ctc_en_train.tar) / - |
|
||||||
|
| SVTR Large | 97.20 | 91.65 | 96.30 | 86.58 | 88.37 | 95.14 | 92.82 | 84.54 | 96.35 | 96.54 | 96.74 | 92.24 | 72.10 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_large_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_large_none_ctc_ch_train.tar) |
|
||||||
|
|
||||||
|
<a name="2"></a>
|
||||||
|
## 2. Environment
|
||||||
|
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
|
||||||
|
|
||||||
|
#### Dataset Preparation
|
||||||
|
|
||||||
|
[English dataset download](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here)
|
||||||
|
[Chinese dataset download](https://github.com/fudanvi/benchmarking-chinese-text-recognition#download)
|
||||||
|
|
||||||
|
<a name="3"></a>
|
||||||
|
## 3. Model Training / Evaluation / Prediction
|
||||||
|
|
||||||
|
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||||
|
|
||||||
|
Training:
|
||||||
|
|
||||||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
#Single GPU training (long training period, not recommended)
|
||||||
|
python3 tools/train.py -c configs/rec/rec_svtrnet.yml
|
||||||
|
|
||||||
|
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_svtrnet.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
Evaluation:
|
||||||
|
|
||||||
|
You can download the model files and configuration files provided by `SVTR`: [download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar), take `SVTR-T` as an example, Use the following command to evaluate:
|
||||||
|
|
||||||
|
```
|
||||||
|
# GPU evaluation
|
||||||
|
python3 tools/eval.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
||||||
|
```
|
||||||
|
|
||||||
|
Prediction:
|
||||||
|
|
||||||
|
```
|
||||||
|
# The configuration file used for prediction must match the training
|
||||||
|
python3 tools/infer_rec.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
|
||||||
|
```
|
||||||
|
|
||||||
|
<a name="4"></a>
|
||||||
|
## 4. Inference and Deployment
|
||||||
|
|
||||||
|
<a name="4-1"></a>
|
||||||
|
### 4.1 Python Inference
|
||||||
|
First, the model saved during the SVTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar)) ), you can use the following command to convert:
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 tools/export_model.py -c configs/rec/rec_svtrnet.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy Global.save_inference_dir=./inference/rec_svtr_tiny_stn_en
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note:**
|
||||||
|
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
|
||||||
|
- If you modified the input size during training, please modify the `infer_shape` corresponding to SVTR in the `tools/export_model.py` file.
|
||||||
|
|
||||||
|
After the conversion is successful, there are three files in the directory:
|
||||||
|
```
|
||||||
|
/inference/rec_svtr_tiny_stn_en/
|
||||||
|
├── inference.pdiparams
|
||||||
|
├── inference.pdiparams.info
|
||||||
|
└── inference.pdmodel
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
For SVTR text recognition model inference, the following commands can be executed:
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_svtr_tiny_stn_en/' --rec_algorithm='SVTR' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt'
|
||||||
|
```
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
|
||||||
|
The result is as follows:
|
||||||
|
```shell
|
||||||
|
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999998807907104)
|
||||||
|
```
|
||||||
|
|
||||||
|
<a name="4-2"></a>
|
||||||
|
### 4.2 C++ Inference
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="4-3"></a>
|
||||||
|
### 4.3 Serving
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="4-4"></a>
|
||||||
|
### 4.4 More
|
||||||
|
|
||||||
|
Not supported
|
||||||
|
|
||||||
|
<a name="5"></a>
|
||||||
|
## 5. FAQ
|
||||||
|
|
||||||
|
1. Since most of the op operators used by `SVTR` are matrix multiplication, in the GPU environment, the speed has an advantage, but in the environment where mkldnn is enabled on the CPU, `SVTR` has no advantage over the optimized convolutional network.
|
@ -169,17 +169,14 @@ class Attention(nn.Layer):
|
|||||||
self.N = H * W
|
self.N = H * W
|
||||||
self.C = dim
|
self.C = dim
|
||||||
if mixer == 'Local' and HW is not None:
|
if mixer == 'Local' and HW is not None:
|
||||||
|
|
||||||
hk = local_k[0]
|
hk = local_k[0]
|
||||||
wk = local_k[1]
|
wk = local_k[1]
|
||||||
mask = np.ones([H * W, H * W])
|
mask = paddle.ones([H * W, H + hk - 1, W + wk - 1], dtype='float32')
|
||||||
for h in range(H):
|
for h in range(0, H):
|
||||||
for w in range(W):
|
for w in range(0, W):
|
||||||
for kh in range(-(hk // 2), (hk // 2) + 1):
|
mask[h * W + w, h:h + hk, w:w + wk] = 0.
|
||||||
for kw in range(-(wk // 2), (wk // 2) + 1):
|
mask_paddle = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk //
|
||||||
if H > (h + kh) >= 0 and W > (w + kw) >= 0:
|
2].flatten(1)
|
||||||
mask[h * W + w][(h + kh) * W + (w + kw)] = 0
|
|
||||||
mask_paddle = paddle.to_tensor(mask, dtype='float32')
|
|
||||||
mask_inf = paddle.full([H * W, H * W], '-inf', dtype='float32')
|
mask_inf = paddle.full([H * W, H * W], '-inf', dtype='float32')
|
||||||
mask = paddle.where(mask_paddle < 1, mask_paddle, mask_inf)
|
mask = paddle.where(mask_paddle < 1, mask_paddle, mask_inf)
|
||||||
self.mask = mask.unsqueeze([0, 1])
|
self.mask = mask.unsqueeze([0, 1])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user