mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-08-22 15:37:52 +00:00
Merge pull request #4547 from andyjpaddle/add_ref_for_sar
add refer to backbone and head of sar
This commit is contained in:
commit
aade74b03e
@ -1,3 +1,22 @@
|
|||||||
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This code is refer from:
|
||||||
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
|
||||||
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
|
||||||
|
"""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
@ -18,12 +37,12 @@ def conv3x3(in_channel, out_channel, stride=1):
|
|||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=stride,
|
stride=stride,
|
||||||
padding=1,
|
padding=1,
|
||||||
bias_attr=False
|
bias_attr=False)
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class BasicBlock(nn.Layer):
|
class BasicBlock(nn.Layer):
|
||||||
expansion = 1
|
expansion = 1
|
||||||
|
|
||||||
def __init__(self, in_channels, channels, stride=1, downsample=False):
|
def __init__(self, in_channels, channels, stride=1, downsample=False):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv1 = conv3x3(in_channels, channels, stride)
|
self.conv1 = conv3x3(in_channels, channels, stride)
|
||||||
@ -34,9 +53,13 @@ class BasicBlock(nn.Layer):
|
|||||||
self.downsample = downsample
|
self.downsample = downsample
|
||||||
if downsample:
|
if downsample:
|
||||||
self.downsample = nn.Sequential(
|
self.downsample = nn.Sequential(
|
||||||
nn.Conv2D(in_channels, channels * self.expansion, 1, stride, bias_attr=False),
|
nn.Conv2D(
|
||||||
nn.BatchNorm2D(channels * self.expansion),
|
in_channels,
|
||||||
)
|
channels * self.expansion,
|
||||||
|
1,
|
||||||
|
stride,
|
||||||
|
bias_attr=False),
|
||||||
|
nn.BatchNorm2D(channels * self.expansion), )
|
||||||
else:
|
else:
|
||||||
self.downsample = nn.Sequential()
|
self.downsample = nn.Sequential()
|
||||||
self.stride = stride
|
self.stride = stride
|
||||||
@ -57,7 +80,7 @@ class BasicBlock(nn.Layer):
|
|||||||
out += residual
|
out += residual
|
||||||
out = self.relu(out)
|
out = self.relu(out)
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
class ResNet31(nn.Layer):
|
class ResNet31(nn.Layer):
|
||||||
@ -69,12 +92,13 @@ class ResNet31(nn.Layer):
|
|||||||
out_indices (None | Sequence[int]): Indices of output stages.
|
out_indices (None | Sequence[int]): Indices of output stages.
|
||||||
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
|
||||||
'''
|
'''
|
||||||
def __init__(self,
|
|
||||||
in_channels=3,
|
def __init__(self,
|
||||||
layers=[1, 2, 5, 3],
|
in_channels=3,
|
||||||
channels=[64, 128, 256, 256, 512, 512, 512],
|
layers=[1, 2, 5, 3],
|
||||||
out_indices=None,
|
channels=[64, 128, 256, 256, 512, 512, 512],
|
||||||
last_stage_pool=False):
|
out_indices=None,
|
||||||
|
last_stage_pool=False):
|
||||||
super(ResNet31, self).__init__()
|
super(ResNet31, self).__init__()
|
||||||
assert isinstance(in_channels, int)
|
assert isinstance(in_channels, int)
|
||||||
assert isinstance(last_stage_pool, bool)
|
assert isinstance(last_stage_pool, bool)
|
||||||
@ -83,46 +107,56 @@ class ResNet31(nn.Layer):
|
|||||||
self.last_stage_pool = last_stage_pool
|
self.last_stage_pool = last_stage_pool
|
||||||
|
|
||||||
# conv 1 (Conv Conv)
|
# conv 1 (Conv Conv)
|
||||||
self.conv1_1 = nn.Conv2D(in_channels, channels[0], kernel_size=3, stride=1, padding=1)
|
self.conv1_1 = nn.Conv2D(
|
||||||
|
in_channels, channels[0], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn1_1 = nn.BatchNorm2D(channels[0])
|
self.bn1_1 = nn.BatchNorm2D(channels[0])
|
||||||
self.relu1_1 = nn.ReLU()
|
self.relu1_1 = nn.ReLU()
|
||||||
|
|
||||||
self.conv1_2 = nn.Conv2D(channels[0], channels[1], kernel_size=3, stride=1, padding=1)
|
self.conv1_2 = nn.Conv2D(
|
||||||
|
channels[0], channels[1], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn1_2 = nn.BatchNorm2D(channels[1])
|
self.bn1_2 = nn.BatchNorm2D(channels[1])
|
||||||
self.relu1_2 = nn.ReLU()
|
self.relu1_2 = nn.ReLU()
|
||||||
|
|
||||||
# conv 2 (Max-pooling, Residual block, Conv)
|
# conv 2 (Max-pooling, Residual block, Conv)
|
||||||
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
self.pool2 = nn.MaxPool2D(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
|
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
|
||||||
self.conv2 = nn.Conv2D(channels[2], channels[2], kernel_size=3, stride=1, padding=1)
|
self.conv2 = nn.Conv2D(
|
||||||
|
channels[2], channels[2], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn2 = nn.BatchNorm2D(channels[2])
|
self.bn2 = nn.BatchNorm2D(channels[2])
|
||||||
self.relu2 = nn.ReLU()
|
self.relu2 = nn.ReLU()
|
||||||
|
|
||||||
# conv 3 (Max-pooling, Residual block, Conv)
|
# conv 3 (Max-pooling, Residual block, Conv)
|
||||||
self.pool3 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
self.pool3 = nn.MaxPool2D(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
|
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
|
||||||
self.conv3 = nn.Conv2D(channels[3], channels[3], kernel_size=3, stride=1, padding=1)
|
self.conv3 = nn.Conv2D(
|
||||||
|
channels[3], channels[3], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn3 = nn.BatchNorm2D(channels[3])
|
self.bn3 = nn.BatchNorm2D(channels[3])
|
||||||
self.relu3 = nn.ReLU()
|
self.relu3 = nn.ReLU()
|
||||||
|
|
||||||
# conv 4 (Max-pooling, Residual block, Conv)
|
# conv 4 (Max-pooling, Residual block, Conv)
|
||||||
self.pool4 = nn.MaxPool2D(kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
|
self.pool4 = nn.MaxPool2D(
|
||||||
|
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
|
||||||
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
|
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
|
||||||
self.conv4 = nn.Conv2D(channels[4], channels[4], kernel_size=3, stride=1, padding=1)
|
self.conv4 = nn.Conv2D(
|
||||||
|
channels[4], channels[4], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn4 = nn.BatchNorm2D(channels[4])
|
self.bn4 = nn.BatchNorm2D(channels[4])
|
||||||
self.relu4 = nn.ReLU()
|
self.relu4 = nn.ReLU()
|
||||||
|
|
||||||
# conv 5 ((Max-pooling), Residual block, Conv)
|
# conv 5 ((Max-pooling), Residual block, Conv)
|
||||||
self.pool5 = None
|
self.pool5 = None
|
||||||
if self.last_stage_pool:
|
if self.last_stage_pool:
|
||||||
self.pool5 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
self.pool5 = nn.MaxPool2D(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
|
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
|
||||||
self.conv5 = nn.Conv2D(channels[5], channels[5], kernel_size=3, stride=1, padding=1)
|
self.conv5 = nn.Conv2D(
|
||||||
|
channels[5], channels[5], kernel_size=3, stride=1, padding=1)
|
||||||
self.bn5 = nn.BatchNorm2D(channels[5])
|
self.bn5 = nn.BatchNorm2D(channels[5])
|
||||||
self.relu5 = nn.ReLU()
|
self.relu5 = nn.ReLU()
|
||||||
|
|
||||||
self.out_channels = channels[-1]
|
self.out_channels = channels[-1]
|
||||||
|
|
||||||
def _make_layer(self, input_channels, output_channels, blocks):
|
def _make_layer(self, input_channels, output_channels, blocks):
|
||||||
layers = []
|
layers = []
|
||||||
for _ in range(blocks):
|
for _ in range(blocks):
|
||||||
@ -130,19 +164,19 @@ class ResNet31(nn.Layer):
|
|||||||
if input_channels != output_channels:
|
if input_channels != output_channels:
|
||||||
downsample = nn.Sequential(
|
downsample = nn.Sequential(
|
||||||
nn.Conv2D(
|
nn.Conv2D(
|
||||||
input_channels,
|
input_channels,
|
||||||
output_channels,
|
output_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
bias_attr=False),
|
bias_attr=False),
|
||||||
nn.BatchNorm2D(output_channels),
|
nn.BatchNorm2D(output_channels), )
|
||||||
)
|
|
||||||
|
layers.append(
|
||||||
layers.append(BasicBlock(input_channels, output_channels, downsample=downsample))
|
BasicBlock(
|
||||||
|
input_channels, output_channels, downsample=downsample))
|
||||||
input_channels = output_channels
|
input_channels = output_channels
|
||||||
return nn.Sequential(*layers)
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv1_1(x)
|
x = self.conv1_1(x)
|
||||||
x = self.bn1_1(x)
|
x = self.bn1_1(x)
|
||||||
@ -166,11 +200,11 @@ class ResNet31(nn.Layer):
|
|||||||
x = block_layer(x)
|
x = block_layer(x)
|
||||||
x = conv_layer(x)
|
x = conv_layer(x)
|
||||||
x = bn_layer(x)
|
x = bn_layer(x)
|
||||||
x= relu_layer(x)
|
x = relu_layer(x)
|
||||||
|
|
||||||
outs.append(x)
|
outs.append(x)
|
||||||
|
|
||||||
if self.out_indices is not None:
|
if self.out_indices is not None:
|
||||||
return tuple([outs[i] for i in self.out_indices])
|
return tuple([outs[i] for i in self.out_indices])
|
||||||
|
|
||||||
return x
|
return x
|
||||||
|
@ -1,3 +1,22 @@
|
|||||||
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This code is refer from:
|
||||||
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/sar_encoder.py
|
||||||
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/sar_decoder.py
|
||||||
|
"""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
Loading…
x
Reference in New Issue
Block a user