mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-12-27 15:08:17 +00:00
add score in rec_infer
This commit is contained in:
parent
78d905113b
commit
ade18e13be
@ -48,6 +48,7 @@ class LMDBReader(object):
|
||||
elif params['mode'] == "test":
|
||||
self.batch_size = 1
|
||||
self.infer_img = params["infer_img"]
|
||||
|
||||
def load_hierarchical_lmdb_dataset(self):
|
||||
lmdb_sets = {}
|
||||
dataset_idx = 0
|
||||
|
||||
@ -110,7 +110,11 @@ class RecModel(object):
|
||||
return loader, outputs
|
||||
elif mode == "export":
|
||||
predict = predicts['predict']
|
||||
predict = fluid.layers.softmax(predict)
|
||||
if self.loss_type == "ctc":
|
||||
predict = fluid.layers.softmax(predict)
|
||||
return [image, {'decoded_out': decoded_out, 'predicts': predict}]
|
||||
else:
|
||||
return loader, {'decoded_out': decoded_out}
|
||||
predict = predicts['predict']
|
||||
if self.loss_type == "ctc":
|
||||
predict = fluid.layers.softmax(predict)
|
||||
return loader, {'decoded_out': decoded_out, 'predicts': predict}
|
||||
|
||||
@ -123,6 +123,8 @@ class AttentionPredict(object):
|
||||
|
||||
full_ids = fluid.layers.fill_constant_batch_size_like(
|
||||
input=init_state, shape=[-1, 1], dtype='int64', value=1)
|
||||
full_scores = fluid.layers.fill_constant_batch_size_like(
|
||||
input=init_state, shape=[-1, 1], dtype='float32', value=1)
|
||||
|
||||
cond = layers.less_than(x=counter, y=array_len)
|
||||
while_op = layers.While(cond=cond)
|
||||
@ -171,6 +173,9 @@ class AttentionPredict(object):
|
||||
new_ids = fluid.layers.concat([full_ids, topk_indices], axis=1)
|
||||
fluid.layers.assign(new_ids, full_ids)
|
||||
|
||||
new_scores = fluid.layers.concat([full_scores, topk_scores], axis=1)
|
||||
fluid.layers.assign(new_scores, full_scores)
|
||||
|
||||
layers.increment(x=counter, value=1, in_place=True)
|
||||
|
||||
# update the memories
|
||||
@ -184,7 +189,7 @@ class AttentionPredict(object):
|
||||
length_cond = layers.less_than(x=counter, y=array_len)
|
||||
finish_cond = layers.logical_not(layers.is_empty(x=topk_indices))
|
||||
layers.logical_and(x=length_cond, y=finish_cond, out=cond)
|
||||
return full_ids
|
||||
return full_ids, full_scores
|
||||
|
||||
def __call__(self, inputs, labels=None, mode=None):
|
||||
encoder_features = self.encoder(inputs)
|
||||
@ -223,10 +228,10 @@ class AttentionPredict(object):
|
||||
decoder_size, char_num)
|
||||
_, decoded_out = layers.topk(input=predict, k=1)
|
||||
decoded_out = layers.lod_reset(decoded_out, y=label_out)
|
||||
predicts = {'predict': predict, 'decoded_out': decoded_out}
|
||||
predicts = {'predict':predict, 'decoded_out':decoded_out}
|
||||
else:
|
||||
ids = self.gru_attention_infer(
|
||||
ids, predict = self.gru_attention_infer(
|
||||
decoder_boot, self.max_length, char_num, word_vector_dim,
|
||||
encoded_vector, encoded_proj, decoder_size)
|
||||
predicts = {'decoded_out': ids}
|
||||
predicts = {'predict':predict, 'decoded_out':ids}
|
||||
return predicts
|
||||
|
||||
@ -79,34 +79,44 @@ def main():
|
||||
|
||||
blobs = reader_main(config, 'test')()
|
||||
infer_img = config['TestReader']['infer_img']
|
||||
loss_type = config['Global']['loss_type']
|
||||
infer_list = get_image_file_list(infer_img)
|
||||
max_img_num = len(infer_list)
|
||||
if len(infer_list) == 0:
|
||||
logger.info("Can not find img in infer_img dir.")
|
||||
for i in range(max_img_num):
|
||||
print("infer_img:",infer_list[i])
|
||||
logger.info("infer_img:%s" % infer_list[i])
|
||||
img = next(blobs)
|
||||
predict = exe.run(program=eval_prog,
|
||||
feed={"image": img},
|
||||
fetch_list=fetch_varname_list,
|
||||
return_numpy=False)
|
||||
|
||||
preds = np.array(predict[0])
|
||||
if preds.shape[1] == 1:
|
||||
if loss_type == "ctc":
|
||||
preds = np.array(predict[0])
|
||||
preds = preds.reshape(-1)
|
||||
preds_lod = predict[0].lod()[0]
|
||||
preds_text = char_ops.decode(preds)
|
||||
else:
|
||||
probs = np.array(predict[1])
|
||||
ind = np.argmax(probs, axis=1)
|
||||
blank = probs.shape[1]
|
||||
valid_ind = np.where(ind != (blank - 1))[0]
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
elif loss_type == "attention":
|
||||
preds = np.array(predict[0])
|
||||
probs = np.array(predict[1])
|
||||
end_pos = np.where(preds[0, :] == 1)[0]
|
||||
if len(end_pos) <= 1:
|
||||
preds_text = preds[0, 1:]
|
||||
preds = preds[0, 1:]
|
||||
score = np.mean(probs[0, 1:])
|
||||
else:
|
||||
preds_text = preds[0, 1:end_pos[1]]
|
||||
preds_text = preds_text.reshape(-1)
|
||||
preds_text = char_ops.decode(preds_text)
|
||||
|
||||
print("\t index:",preds)
|
||||
print("\t word :",preds_text)
|
||||
preds = preds[0, 1:end_pos[1]]
|
||||
score = np.mean(probs[0, 1:end_pos[1]])
|
||||
preds = preds.reshape(-1)
|
||||
preds_text = char_ops.decode(preds)
|
||||
|
||||
print("\t index:", preds)
|
||||
print("\t word :", preds_text)
|
||||
print("\t score :", score)
|
||||
|
||||
# save for inference model
|
||||
target_var = []
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user