mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	Merge pull request #8013 from WenmuZhou/whl
add recovery requirements to whl
This commit is contained in:
		
						commit
						da90f43ca7
					
				@ -23,7 +23,7 @@
 | 
			
		||||
 | 
			
		||||
| 模型  |骨干网络|配置文件|precision|recall|Hmean|下载链接|
 | 
			
		||||
|-----| --- | --- | --- | --- | --- | --- |
 | 
			
		||||
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
 | 
			
		||||
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
## 2. 环境配置
 | 
			
		||||
 | 
			
		||||
@ -55,7 +55,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
 | 
			
		||||
|模型|骨干网络|precision|recall|Hmean|下载链接|
 | 
			
		||||
| --- | --- | --- | --- | --- | --- |  
 | 
			
		||||
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
 | 
			
		||||
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
 | 
			
		||||
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
 | 
			
		||||
 | 
			
		||||
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
 | 
			
		||||
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
 | 
			
		||||
 | 
			
		||||
@ -27,7 +27,7 @@
 | 
			
		||||
 | 
			
		||||
|模型    |骨干网络|配置文件|ExpRate|下载链接|
 | 
			
		||||
| ----- | ----- | ----- | ----- | ----- |
 | 
			
		||||
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72|[训练模型](https://paddleocr.bj.bcebos.com/contribution/can_train.tar)|
 | 
			
		||||
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar)|
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
## 2. 环境配置
 | 
			
		||||
 | 
			
		||||
@ -27,7 +27,7 @@
 | 
			
		||||
 | 
			
		||||
|模型|骨干网络|PSNR_Avg|SSIM_Avg|配置文件|下载链接|
 | 
			
		||||
|---|---|---|---|---|---|
 | 
			
		||||
|Text Telescope|tbsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[训练模型](https://paddleocr.bj.bcebos.com/contribution/Telescope_train.tar.gz)|
 | 
			
		||||
|Text Telescope|tbsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[训练模型](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)|
 | 
			
		||||
 | 
			
		||||
[TextZoom数据集](https://paddleocr.bj.bcebos.com/dataset/TextZoom.tar) 来自两个超分数据集RealSR和SR-RAW,两个数据集都包含LR-HR对,TextZoom有17367对训数据和4373对测试数据。
 | 
			
		||||
 | 
			
		||||
@ -118,8 +118,8 @@ python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=
 | 
			
		||||
```bibtex
 | 
			
		||||
@INPROCEEDINGS{9578891,
 | 
			
		||||
  author={Chen, Jingye and Li, Bin and Xue, Xiangyang},
 | 
			
		||||
  booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, 
 | 
			
		||||
  title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution}, 
 | 
			
		||||
  booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 | 
			
		||||
  title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution},
 | 
			
		||||
  year={2021},
 | 
			
		||||
  volume={},
 | 
			
		||||
  number={},
 | 
			
		||||
 | 
			
		||||
@ -25,7 +25,7 @@ On the CTW1500 dataset, the text detection result is as follows:
 | 
			
		||||
 | 
			
		||||
|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
 | 
			
		||||
| --- | --- | --- | --- | --- | --- | --- |
 | 
			
		||||
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
 | 
			
		||||
| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
## 2. Environment
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ On CTW1500 dataset, the text detection result is as follows:
 | 
			
		||||
|Model|Backbone|Precision|Recall|Hmean| Download link|
 | 
			
		||||
| --- | --- | --- | --- | --- |---|  
 | 
			
		||||
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%| [trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) |
 | 
			
		||||
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw.tar)|
 | 
			
		||||
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
 | 
			
		||||
 | 
			
		||||
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
 | 
			
		||||
* [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
 | 
			
		||||
 | 
			
		||||
@ -25,7 +25,7 @@ Using CROHME handwrittem mathematical expression recognition datasets for traini
 | 
			
		||||
 | 
			
		||||
|Model|Backbone|config|exprate|Download link|
 | 
			
		||||
| --- | --- | --- | --- | --- |
 | 
			
		||||
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72|[trained model](https://paddleocr.bj.bcebos.com/contribution/can_train.tar)|
 | 
			
		||||
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72|[trained model](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar)|
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
## 2. Environment
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/scene-
 | 
			
		||||
 | 
			
		||||
|Model|Backbone|config|Acc|Download link|
 | 
			
		||||
|---|---|---|---|---|---|
 | 
			
		||||
|Text Gestalt|tsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[train model](https://paddleocr.bj.bcebos.com/contribution/Telescope_train.tar.gz)|
 | 
			
		||||
|Text Gestalt|tsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[train model](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)|
 | 
			
		||||
 | 
			
		||||
The [TextZoom dataset](https://paddleocr.bj.bcebos.com/dataset/TextZoom.tar) comes from two superfraction data sets, RealSR and SR-RAW, both of which contain LR-HR pairs. TextZoom has 17367 pairs of training data and 4373 pairs of test data.
 | 
			
		||||
 | 
			
		||||
@ -127,8 +127,8 @@ Not supported
 | 
			
		||||
```bibtex
 | 
			
		||||
@INPROCEEDINGS{9578891,
 | 
			
		||||
  author={Chen, Jingye and Li, Bin and Xue, Xiangyang},
 | 
			
		||||
  booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, 
 | 
			
		||||
  title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution}, 
 | 
			
		||||
  booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 | 
			
		||||
  title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution},
 | 
			
		||||
  year={2021},
 | 
			
		||||
  volume={},
 | 
			
		||||
  number={},
 | 
			
		||||
 | 
			
		||||
@ -47,7 +47,7 @@ __all__ = [
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
SUPPORT_DET_MODEL = ['DB']
 | 
			
		||||
VERSION = '2.6.0.2'
 | 
			
		||||
VERSION = '2.6.0.3'
 | 
			
		||||
SUPPORT_REC_MODEL = ['CRNN', 'SVTR_LCNet']
 | 
			
		||||
BASE_DIR = os.path.expanduser("~/.paddleocr/")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -45,16 +45,10 @@
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# 安装 paddleocr,推荐使用2.6版本
 | 
			
		||||
pip3 install "paddleocr>=2.6"
 | 
			
		||||
pip3 install "paddleocr>=2.6.0.3"
 | 
			
		||||
 | 
			
		||||
# 安装 图像方向分类依赖包paddleclas(如不需要图像方向分类功能,可跳过)
 | 
			
		||||
pip3 install paddleclas>=2.4.3
 | 
			
		||||
 | 
			
		||||
# 安装 关键信息抽取 依赖包(如不需要KIE功能,可跳过)
 | 
			
		||||
pip3 install -r ppstructure/kie/requirements.txt
 | 
			
		||||
 | 
			
		||||
# 安装 版面恢复 依赖包(如不需要版面恢复功能,可跳过)
 | 
			
		||||
pip3 install -r ppstructure/recovery/requirements.txt
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
 | 
			
		||||
@ -47,16 +47,10 @@ For more software version requirements, please refer to the instructions in [Ins
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# Install paddleocr, version 2.6 is recommended
 | 
			
		||||
pip3 install "paddleocr>=2.6"
 | 
			
		||||
pip3 install "paddleocr>=2.6.0.3"
 | 
			
		||||
 | 
			
		||||
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
 | 
			
		||||
pip3 install paddleclas>=2.4.3
 | 
			
		||||
 | 
			
		||||
# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
 | 
			
		||||
pip3 install -r kie/requirements.txt
 | 
			
		||||
 | 
			
		||||
# Install the layout recovery dependency packages (if you do not use the layout recovery, you can skip it)
 | 
			
		||||
pip3 install -r recovery/requirements.txt
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
<a name="2"></a>
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										15
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								setup.py
									
									
									
									
									
								
							@ -16,9 +16,16 @@ from setuptools import setup
 | 
			
		||||
from io import open
 | 
			
		||||
from paddleocr import VERSION
 | 
			
		||||
 | 
			
		||||
with open('requirements.txt', encoding="utf-8-sig") as f:
 | 
			
		||||
    requirements = f.readlines()
 | 
			
		||||
    requirements.append('tqdm')
 | 
			
		||||
def load_requirements(file_list=None):
 | 
			
		||||
    if file_list is None:
 | 
			
		||||
        file_list = ['requirements.txt']
 | 
			
		||||
    if isinstance(file_list,str):
 | 
			
		||||
        file_list = [file_list]
 | 
			
		||||
    requirements = []
 | 
			
		||||
    for file in file_list:
 | 
			
		||||
        with open(file, encoding="utf-8-sig") as f:
 | 
			
		||||
            requirements.extend(f.readlines())
 | 
			
		||||
    return requirements
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def readme():
 | 
			
		||||
@ -34,7 +41,7 @@ setup(
 | 
			
		||||
    include_package_data=True,
 | 
			
		||||
    entry_points={"console_scripts": ["paddleocr= paddleocr.paddleocr:main"]},
 | 
			
		||||
    version=VERSION,
 | 
			
		||||
    install_requires=requirements,
 | 
			
		||||
    install_requires=load_requirements(['requirements.txt', 'ppstructure/recovery/requirements.txt']),
 | 
			
		||||
    license='Apache License 2.0',
 | 
			
		||||
    description='Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',
 | 
			
		||||
    long_description=readme(),
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user