mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-12-27 06:58:20 +00:00
update recognition, add algorithm en doc
This commit is contained in:
parent
99f476cd8f
commit
fcd3b0f005
@ -39,14 +39,14 @@ python3.7 -m pip install onnxruntime==1.9.0
|
||||
有两种方式获取Paddle静态图模型:在 [model_list](../../doc/doc_ch/models_list.md) 中下载PaddleOCR提供的预测模型;
|
||||
参考[模型导出说明](../../doc/doc_ch/inference.md#训练模型转inference模型)把训练好的权重转为 inference_model。
|
||||
|
||||
以 ppocr 中文检测、识别、分类模型为例:
|
||||
以 PP-OCRv3 中文检测、识别、分类模型为例:
|
||||
|
||||
```
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv2_det_infer.tar && cd ..
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv3_det_infer.tar && cd ..
|
||||
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv2_rec_infer.tar && cd ..
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv3_rec_infer.tar && cd ..
|
||||
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
|
||||
@ -57,7 +57,7 @@ cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
|
||||
使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式:
|
||||
|
||||
```
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv3_det_infer \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--save_file ./inference/det_onnx/model.onnx \
|
||||
@ -65,7 +65,7 @@ paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
|
||||
--input_shape_dict="{'x':[-1,3,-1,-1]}" \
|
||||
--enable_onnx_checker True
|
||||
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv2_rec_infer \
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv3_rec_infer \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--save_file ./inference/rec_onnx/model.onnx \
|
||||
@ -105,8 +105,8 @@ python3.7 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
|
||||
```
|
||||
python3.7 tools/infer/predict_system.py --use_gpu=False \
|
||||
--cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \
|
||||
--rec_model_dir=./inference/ch_PP-OCRv2_rec_infer \
|
||||
--det_model_dir=./inference/ch_PP-OCRv2_det_infer \
|
||||
--rec_model_dir=./inference/ch_PP-OCRv3_rec_infer \
|
||||
--det_model_dir=./inference/ch_PP-OCRv3_det_infer \
|
||||
--image_dir=./deploy/lite/imgs/lite_demo.png
|
||||
```
|
||||
|
||||
|
||||
@ -15,6 +15,14 @@ Some Key Features of Paddle Serving:
|
||||
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
|
||||
- Highly concurrent and efficient communication between clients and servers supported.
|
||||
|
||||
PaddleServing supports deployment in multiple languages. In this example, two deployment methods, python pipeline and C++, are provided. The comparison between the two is as follows:
|
||||
|
||||
| Language | Speed | Secondary development | Do you need to compile |
|
||||
|-----|-----|---------|------------|
|
||||
| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
|
||||
| python | general | easy | single-model/multi-model no compilation required |
|
||||
|
||||
|
||||
The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
|
||||
|
||||
|
||||
@ -25,6 +33,7 @@ The introduction and tutorial of Paddle Serving service deployment framework ref
|
||||
- [Environmental preparation](#environmental-preparation)
|
||||
- [Model conversion](#model-conversion)
|
||||
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
|
||||
- [Paddle Serving C++ deployment](#C++)
|
||||
- [WINDOWS Users](#windows-users)
|
||||
- [FAQ](#faq)
|
||||
|
||||
@ -41,23 +50,23 @@ PaddleOCR operating environment and Paddle Serving operating environment are nee
|
||||
|
||||
```bash
|
||||
# Install serving which used to start the service
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
|
||||
pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
|
||||
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
|
||||
|
||||
# Install paddle-serving-server for cuda10.1
|
||||
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
|
||||
# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
|
||||
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
|
||||
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
|
||||
|
||||
# Install serving which used to start the service
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
|
||||
pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
|
||||
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
|
||||
|
||||
# Install serving-app
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
|
||||
pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
|
||||
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
|
||||
```
|
||||
|
||||
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
|
||||
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md).
|
||||
|
||||
|
||||
<a name="model-conversion"></a>
|
||||
@ -67,37 +76,37 @@ When using PaddleServing for service deployment, you need to convert the saved i
|
||||
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/README_ch.md#pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD) of PPOCR
|
||||
```
|
||||
# Download and unzip the OCR text detection model
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
|
||||
# Download and unzip the OCR text recognition model
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar && tar -xf ch_PP-OCRv2_rec_infer.tar
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar && tar -xf ch_PP-OCRv3_rec_infer.tar
|
||||
```
|
||||
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
|
||||
```
|
||||
# Detection model conversion
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--serving_server ./ppocr_det_mobile_2.0_serving/ \
|
||||
--serving_client ./ppocr_det_mobile_2.0_client/
|
||||
--serving_server ./ppocr_det_v3_serving/ \
|
||||
--serving_client ./ppocr_det_v3_client/
|
||||
|
||||
# Recognition model conversion
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--serving_server ./ppocr_rec_mobile_2.0_serving/ \
|
||||
--serving_client ./ppocr_rec_mobile_2.0_client/
|
||||
--serving_server ./ppocr_rec_v3_serving/ \
|
||||
--serving_client ./ppocr_rec_v3_client/
|
||||
|
||||
```
|
||||
|
||||
After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format:
|
||||
After the detection model is converted, there will be additional folders of `ppocr_det_v3_serving` and `ppocr_det_v3_client` in the current folder, with the following format:
|
||||
```
|
||||
|- ppocr_det_mobile_2.0_serving/
|
||||
|- ppocr_det_v3_serving/
|
||||
|- __model__
|
||||
|- __params__
|
||||
|- serving_server_conf.prototxt
|
||||
|- serving_server_conf.stream.prototxt
|
||||
|
||||
|- ppocr_det_mobile_2.0_client
|
||||
|- ppocr_det_v3_client
|
||||
|- serving_client_conf.prototxt
|
||||
|- serving_client_conf.stream.prototxt
|
||||
|
||||
@ -193,16 +202,13 @@ The recognition model is the same.
|
||||
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
|
||||
```
|
||||
|
||||
<a name="C++"></a>
|
||||
## C++ Serving
|
||||
|
||||
Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.
|
||||
|
||||
The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.
|
||||
|
||||
| Language | Speed | Secondary development | Do you need to compile |
|
||||
|-----|-----|---------|------------|
|
||||
| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
|
||||
| python | general | easy | single-model/multi-model no compilation required |
|
||||
|
||||
1. Compile Serving
|
||||
|
||||
@ -211,7 +217,7 @@ The C++ service deployment is the same as python in the environment setup and da
|
||||
2. Run the following command to start the service.
|
||||
```
|
||||
# Start the service and save the running log in log.txt
|
||||
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
|
||||
python3 -m paddle_serving_server.serve --model ppocr_det_v3_serving ppocr_rec_v3_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
|
||||
```
|
||||
After the service is successfully started, a log similar to the following will be printed in log.txt
|
||||

|
||||
@ -219,7 +225,7 @@ The C++ service deployment is the same as python in the environment setup and da
|
||||
3. Send service request
|
||||
|
||||
Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
|
||||
Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following:
|
||||
Change the feed_type field and shape field in ppocr_det_v3_client/serving_client_conf.prototxt to the following:
|
||||
|
||||
```
|
||||
feed_var {
|
||||
@ -234,7 +240,7 @@ The C++ service deployment is the same as python in the environment setup and da
|
||||
start the client:
|
||||
|
||||
```
|
||||
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
|
||||
python3 ocr_cpp_client.py ppocr_det_v3_client ppocr_rec_v3_client
|
||||
```
|
||||
After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
|
||||

|
||||
|
||||
@ -54,22 +54,22 @@ AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](h
|
||||
|
||||
```bash
|
||||
# 安装serving,用于启动服务
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
|
||||
pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
|
||||
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
|
||||
# 如果是cuda10.1环境,可以使用下面的命令安装paddle-serving-server
|
||||
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
|
||||
# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
|
||||
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
|
||||
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
|
||||
|
||||
# 安装client,用于向服务发送请求
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
|
||||
pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
|
||||
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
|
||||
|
||||
# 安装serving-app
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
|
||||
pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
|
||||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
|
||||
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
|
||||
```
|
||||
|
||||
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)。
|
||||
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md)。
|
||||
|
||||
<a name="模型转换"></a>
|
||||
## 模型转换
|
||||
@ -80,38 +80,38 @@ pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
|
||||
|
||||
```bash
|
||||
# 下载并解压 OCR 文本检测模型
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
|
||||
# 下载并解压 OCR 文本识别模型
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar && tar -xf ch_PP-OCRv2_rec_infer.tar
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar && tar -xf ch_PP-OCRv3_rec_infer.tar
|
||||
```
|
||||
|
||||
接下来,用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。
|
||||
|
||||
```bash
|
||||
# 转换检测模型
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--serving_server ./ppocr_det_mobile_2.0_serving/ \
|
||||
--serving_client ./ppocr_det_mobile_2.0_client/
|
||||
--serving_server ./ppocr_det_v3_serving/ \
|
||||
--serving_client ./ppocr_det_v3_client/
|
||||
|
||||
# 转换识别模型
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
|
||||
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--serving_server ./ppocr_rec_mobile_2.0_serving/ \
|
||||
--serving_client ./ppocr_rec_mobile_2.0_client/
|
||||
--serving_server ./ppocr_rec_v3_serving/ \
|
||||
--serving_client ./ppocr_rec_v3_client/
|
||||
```
|
||||
|
||||
检测模型转换完成后,会在当前文件夹多出`ppocr_det_mobile_2.0_serving` 和`ppocr_det_mobile_2.0_client`的文件夹,具备如下格式:
|
||||
检测模型转换完成后,会在当前文件夹多出`ppocr_det_v3_serving` 和`ppocr_det_v3_client`的文件夹,具备如下格式:
|
||||
```
|
||||
|- ppocr_det_mobile_2.0_serving/
|
||||
|- ppocr_det_v3_serving/
|
||||
|- __model__
|
||||
|- __params__
|
||||
|- serving_server_conf.prototxt
|
||||
|- serving_server_conf.stream.prototxt
|
||||
|
||||
|- ppocr_det_mobile_2.0_client
|
||||
|- ppocr_det_v3_client
|
||||
|- serving_client_conf.prototxt
|
||||
|- serving_client_conf.stream.prototxt
|
||||
|
||||
@ -230,7 +230,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
|
||||
|
||||
```
|
||||
# 启动服务,运行日志保存在log.txt
|
||||
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
|
||||
python3 -m paddle_serving_server.serve --model ppocr_det_v3_serving ppocr_rec_v3_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
|
||||
```
|
||||
成功启动服务后,log.txt中会打印类似如下日志
|
||||

|
||||
@ -238,7 +238,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
|
||||
3. 发送服务请求:
|
||||
|
||||
由于需要在C++Server部分进行前后处理,为了加速传入C++Server的仅仅是图片的base64编码的字符串,故需要手动修改
|
||||
ppocrv2_det_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
|
||||
ppocr_det_v3_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
|
||||
```
|
||||
feed_var {
|
||||
name: "x"
|
||||
@ -250,7 +250,7 @@ cp -rf general_detection_op.cpp Serving/core/general-server/op
|
||||
```
|
||||
启动客户端
|
||||
```
|
||||
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
|
||||
python3 ocr_cpp_client.py ppocr_det_v3_client ppocr_rec_v3_client
|
||||
```
|
||||
|
||||
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
|
||||
|
||||
@ -34,7 +34,7 @@ op:
|
||||
client_type: local_predictor
|
||||
|
||||
#det模型路径
|
||||
model_config: ./ppocr_det_mobile_2.0_serving
|
||||
model_config: ./ppocr_det_v3_serving
|
||||
|
||||
#Fetch结果列表,以client_config中fetch_var的alias_name为准
|
||||
fetch_list: ["save_infer_model/scale_0.tmp_1"]
|
||||
@ -60,10 +60,10 @@ op:
|
||||
client_type: local_predictor
|
||||
|
||||
#rec模型路径
|
||||
model_config: ./ppocr_rec_mobile_2.0_serving
|
||||
model_config: ./ppocr_rec_v3_serving
|
||||
|
||||
#Fetch结果列表,以client_config中fetch_var的alias_name为准
|
||||
fetch_list: ["save_infer_model/scale_0.tmp_1"]
|
||||
fetch_list: ["softmax_5.tmp_0"]
|
||||
|
||||
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
|
||||
devices: "0"
|
||||
|
||||
@ -392,38 +392,8 @@ class OCRReader(object):
|
||||
|
||||
return norm_img_batch[0]
|
||||
|
||||
def postprocess_old(self, outputs, with_score=False):
|
||||
rec_res = []
|
||||
rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"]
|
||||
rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"]
|
||||
if with_score:
|
||||
predict_lod = outputs["softmax_0.tmp_0.lod"]
|
||||
for rno in range(len(rec_idx_lod) - 1):
|
||||
beg = rec_idx_lod[rno]
|
||||
end = rec_idx_lod[rno + 1]
|
||||
if isinstance(rec_idx_batch, list):
|
||||
rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]]
|
||||
else: #nd array
|
||||
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
||||
preds_text = self.char_ops.decode(rec_idx_tmp)
|
||||
if with_score:
|
||||
beg = predict_lod[rno]
|
||||
end = predict_lod[rno + 1]
|
||||
if isinstance(outputs["softmax_0.tmp_0"], list):
|
||||
outputs["softmax_0.tmp_0"] = np.array(outputs[
|
||||
"softmax_0.tmp_0"]).astype(np.float32)
|
||||
probs = outputs["softmax_0.tmp_0"][beg:end, :]
|
||||
ind = np.argmax(probs, axis=1)
|
||||
blank = probs.shape[1]
|
||||
valid_ind = np.where(ind != (blank - 1))[0]
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
rec_res.append([preds_text, score])
|
||||
else:
|
||||
rec_res.append([preds_text])
|
||||
return rec_res
|
||||
|
||||
def postprocess(self, outputs, with_score=False):
|
||||
preds = outputs["save_infer_model/scale_0.tmp_1"]
|
||||
preds = outputs["softmax_5.tmp_0"]
|
||||
try:
|
||||
preds = preds.numpy()
|
||||
except:
|
||||
|
||||
@ -392,38 +392,8 @@ class OCRReader(object):
|
||||
|
||||
return norm_img_batch[0]
|
||||
|
||||
def postprocess_old(self, outputs, with_score=False):
|
||||
rec_res = []
|
||||
rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"]
|
||||
rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"]
|
||||
if with_score:
|
||||
predict_lod = outputs["softmax_0.tmp_0.lod"]
|
||||
for rno in range(len(rec_idx_lod) - 1):
|
||||
beg = rec_idx_lod[rno]
|
||||
end = rec_idx_lod[rno + 1]
|
||||
if isinstance(rec_idx_batch, list):
|
||||
rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]]
|
||||
else: #nd array
|
||||
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
||||
preds_text = self.char_ops.decode(rec_idx_tmp)
|
||||
if with_score:
|
||||
beg = predict_lod[rno]
|
||||
end = predict_lod[rno + 1]
|
||||
if isinstance(outputs["softmax_0.tmp_0"], list):
|
||||
outputs["softmax_0.tmp_0"] = np.array(outputs[
|
||||
"softmax_0.tmp_0"]).astype(np.float32)
|
||||
probs = outputs["softmax_0.tmp_0"][beg:end, :]
|
||||
ind = np.argmax(probs, axis=1)
|
||||
blank = probs.shape[1]
|
||||
valid_ind = np.where(ind != (blank - 1))[0]
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
rec_res.append([preds_text, score])
|
||||
else:
|
||||
rec_res.append([preds_text])
|
||||
return rec_res
|
||||
|
||||
def postprocess(self, outputs, with_score=False):
|
||||
preds = outputs["save_infer_model/scale_0.tmp_1"]
|
||||
preds = outputs["softmax_5.tmp_0"]
|
||||
try:
|
||||
preds = preds.numpy()
|
||||
except:
|
||||
|
||||
@ -25,10 +25,10 @@
|
||||
|
||||
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
||||
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
||||
|---|---|---|---|---|
|
||||
|CRNN|Resnet34_vd|81.04%|rec_r34_vd_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|CRNN|MobileNetV3|77.95%|rec_mv3_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|CRNN|Resnet34_vd|81.04%|[configs/rec/rec_r34_vd_none_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|CRNN|MobileNetV3|77.95%|[configs/rec/rec_mv3_none_bilstm_ctc.yml](../../configs/rec/rec_mv3_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
@ -41,6 +41,32 @@
|
||||
|
||||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
||||
|
||||
- 训练
|
||||
|
||||
在完成数据准备后,便可以启动训练,训练命令如下:
|
||||
|
||||
```
|
||||
#单卡训练(训练周期长,不建议)
|
||||
python3 tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
|
||||
|
||||
#多卡训练,通过--gpus参数指定卡号
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_none_bilstm_ctc.yml
|
||||
|
||||
```
|
||||
|
||||
- 评估
|
||||
|
||||
```
|
||||
# GPU 评估, Global.pretrained_model 为待测权重
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
- 预测:
|
||||
|
||||
```
|
||||
# 预测使用的配置文件必须与训练一致
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. 推理部署
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
## 1. 算法简介
|
||||
|
||||
论文信息:
|
||||
> [STAR-Net: a spatial attention residue network for scene text recognition.](https://arxiv.org/pdf/2005.10977.pdf)
|
||||
> [SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition](https://arxiv.org/pdf/2005.10977.pdf)
|
||||
|
||||
> Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping
|
||||
|
||||
@ -25,9 +25,9 @@
|
||||
|
||||
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
||||
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
||||
|---|---|---|---|---|
|
||||
|SEED|Aster_Resnet| 85.2% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|
||||
|SEED|Aster_Resnet| 85.2% | [configs/rec/rec_resnet_stn_bilstm_att.yml](../../configs/rec/rec_resnet_stn_bilstm_att.yml) | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. 环境配置
|
||||
@ -39,6 +39,38 @@
|
||||
|
||||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
||||
|
||||
- 训练
|
||||
|
||||
SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) ,并且安装 fasttext 依赖:
|
||||
|
||||
```
|
||||
python3 -m pip install fasttext==0.9.1
|
||||
```
|
||||
|
||||
然后,在完成数据准备后,便可以启动训练,训练命令如下:
|
||||
|
||||
```
|
||||
#单卡训练(训练周期长,不建议)
|
||||
python3 tools/train.py -c configs/rec/rec_resnet_stn_bilstm_att.yml
|
||||
|
||||
#多卡训练,通过--gpus参数指定卡号
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_resnet_stn_bilstm_att.yml
|
||||
|
||||
```
|
||||
|
||||
- 评估
|
||||
|
||||
```
|
||||
# GPU 评估, Global.pretrained_model 为待测权重
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
- 预测:
|
||||
|
||||
```
|
||||
# 预测使用的配置文件必须与训练一致
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. 推理部署
|
||||
@ -48,6 +80,7 @@
|
||||
|
||||
comming soon
|
||||
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++推理
|
||||
|
||||
|
||||
@ -25,10 +25,10 @@
|
||||
|
||||
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
||||
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
||||
|---|---|---|---|---|
|
||||
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|Resnet34_vd|84.44%|[configs/rec/rec_r34_vd_tps_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|MobileNetV3|81.42%|[configs/rec/rec_mv3_tps_bilstm_ctc.yml](../../configs/rec/rec_mv3_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
@ -41,6 +41,32 @@
|
||||
|
||||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
||||
|
||||
- 训练
|
||||
|
||||
在完成数据准备后,便可以启动训练,训练命令如下:
|
||||
|
||||
```
|
||||
#单卡训练(训练周期长,不建议)
|
||||
python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml
|
||||
|
||||
#多卡训练,通过--gpus参数指定卡号
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_tps_bilstm_ctc.yml
|
||||
|
||||
```
|
||||
|
||||
- 评估
|
||||
|
||||
```
|
||||
# GPU 评估, Global.pretrained_model 为待测权重
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
- 预测:
|
||||
|
||||
```
|
||||
# 预测使用的配置文件必须与训练一致
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. 推理部署
|
||||
|
||||
@ -99,8 +99,6 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
|
||||
|
||||
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
|
||||
|
||||
如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。
|
||||
|
||||
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
|
||||
|
||||
```
|
||||
@ -165,13 +163,12 @@ PaddleOCR内置了一部分字典,可以按需使用。
|
||||
|
||||
|
||||
|
||||
|
||||
目前的多语言模型仍处在demo阶段,会持续优化模型并补充语种,**非常欢迎您为我们提供其他语言的字典和字体**,
|
||||
如您愿意可将字典文件提交至 [dict](../../ppocr/utils/dict),我们会在Repo中感谢您。
|
||||
|
||||
- 自定义字典
|
||||
|
||||
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
|
||||
如需自定义dic文件,请在 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
|
||||
|
||||
<a name="支持空格"></a>
|
||||
### 1.4 添加空格类别
|
||||
@ -196,17 +193,17 @@ PaddleOCR提供了多种数据增强方式,默认配置文件中已经添加
|
||||
<a name="通用模型训练"></a>
|
||||
### 2.2 通用模型训练
|
||||
|
||||
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例:
|
||||
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 PP-OCRv3 英文识别模型为例:
|
||||
|
||||
首先下载pretrain model,您可以下载训练好的模型在 icdar2015 数据上进行finetune
|
||||
|
||||
```
|
||||
cd PaddleOCR/
|
||||
# 下载MobileNetV3的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
|
||||
# 下载英文PP-OCRv3的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar
|
||||
# 解压模型参数
|
||||
cd pretrain_models
|
||||
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
|
||||
tar -xf en_PP-OCRv3_rec_train.tar && rm -rf en_PP-OCRv3_rec_train.tar
|
||||
```
|
||||
|
||||
开始训练:
|
||||
@ -218,44 +215,23 @@ tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc
|
||||
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log
|
||||
|
||||
#单卡训练(训练周期长,不建议)
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
|
||||
python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy
|
||||
|
||||
#多卡训练,通过--gpus参数指定卡号
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy
|
||||
```
|
||||
|
||||
|
||||
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy` 。
|
||||
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/en_PP-OCRv3_rec/best_accuracy` 。
|
||||
|
||||
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
|
||||
|
||||
**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,PaddleOCR支持的识别算法有:
|
||||
**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,PaddleOCR支持的识别算法可以参考[前沿算法列表](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/algorithm_overview.md#12-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95):
|
||||
|
||||
|
||||
| 配置文件 | 算法名称 | backbone | trans | seq | pred |
|
||||
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
|
||||
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
|
||||
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
|
||||
| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
|
||||
| rec_mv3_none_bilstm_ctc.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
|
||||
| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
|
||||
| rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc |
|
||||
| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
|
||||
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
|
||||
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
|
||||
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
|
||||
| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |
|
||||
训练中文数据,推荐使用[ch_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
|
||||
|
||||
*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) ,并且安装 fasttext 依赖:
|
||||
```
|
||||
python3.7 -m pip install fasttext==0.9.1
|
||||
```
|
||||
|
||||
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
|
||||
|
||||
以 `rec_chinese_lite_train_v2.0.yml` 为例:
|
||||
以 `ch_PP-OCRv3_rec.yml` 为例:
|
||||
```
|
||||
Global:
|
||||
...
|
||||
@ -288,7 +264,7 @@ Train:
|
||||
...
|
||||
- RecResizeImg:
|
||||
# 修改 image_shape 以适应长文本
|
||||
image_shape: [3, 32, 320]
|
||||
image_shape: [3, 48, 320]
|
||||
...
|
||||
loader:
|
||||
...
|
||||
@ -308,7 +284,7 @@ Eval:
|
||||
...
|
||||
- RecResizeImg:
|
||||
# 修改 image_shape 以适应长文本
|
||||
image_shape: [3, 32, 320]
|
||||
image_shape: [3, 48, 320]
|
||||
...
|
||||
loader:
|
||||
# 单卡验证的batch_size
|
||||
@ -383,11 +359,11 @@ PaddleOCR支持了基于知识蒸馏的文本识别模型训练过程,更多
|
||||
<a name="评估"></a>
|
||||
## 3 评估
|
||||
|
||||
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
|
||||
评估数据集可以通过 `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` 修改Eval中的 `label_file_path` 设置。
|
||||
|
||||
```
|
||||
# GPU 评估, Global.checkpoints 为待测权重
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
<a name="预测"></a>
|
||||
@ -417,7 +393,7 @@ output/rec/
|
||||
|
||||
```
|
||||
# 预测英文结果
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
预测图片:
|
||||
@ -436,7 +412,7 @@ infer_img: doc/imgs_words/en/word_1.png
|
||||
|
||||
```
|
||||
# 预测中文结果
|
||||
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
|
||||
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
|
||||
```
|
||||
|
||||
预测图片:
|
||||
@ -462,15 +438,15 @@ infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
|
||||
python3 tools/export_model.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy Global.save_inference_dir=./inference/en_PP-OCRv3_rec/
|
||||
```
|
||||
|
||||
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
|
||||
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`为自定义字典文件。
|
||||
|
||||
转换成功后,在目录下有三个文件:
|
||||
|
||||
```
|
||||
/inference/rec_crnn/
|
||||
/inference/en_PP-OCRv3_rec/
|
||||
├── inference.pdiparams # 识别inference模型的参数文件
|
||||
├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略
|
||||
└── inference.pdmodel # 识别inference模型的program文件
|
||||
@ -481,5 +457,5 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai
|
||||
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 48, 320" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
122
doc/doc_en/algorithm_rec_aster_en.md
Normal file
122
doc/doc_en/algorithm_rec_aster_en.md
Normal file
@ -0,0 +1,122 @@
|
||||
# STAR-Net
|
||||
|
||||
- [1. Introduction](#1)
|
||||
- [2. Environment](#2)
|
||||
- [3. Model Training / Evaluation / Prediction](#3)
|
||||
- [3.1 Training](#3-1)
|
||||
- [3.2 Evaluation](#3-2)
|
||||
- [3.3 Prediction](#3-3)
|
||||
- [4. Inference and Deployment](#4)
|
||||
- [4.1 Python Inference](#4-1)
|
||||
- [4.2 C++ Inference](#4-2)
|
||||
- [4.3 Serving](#4-3)
|
||||
- [4.4 More](#4-4)
|
||||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. Introduction
|
||||
|
||||
Paper:
|
||||
> [STAR-Net: a spatial attention residue network for scene text recognition.](http://www.bmva.org/bmvc/2016/papers/paper043/paper043.pdf)
|
||||
|
||||
> Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong, Zhizhong Su and Junyu Han.
|
||||
|
||||
> BMVC, pages 43.1-43.13, 2016
|
||||
|
||||
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|
||||
|
||||
|Model|Backbone|ACC|config|Download link|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|---|---|---|---|---|
|
||||
|StarNet|Resnet34_vd|84.44%|[configs/rec/rec_r34_vd_tps_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|MobileNetV3|81.42%|[configs/rec/rec_mv3_tps_bilstm_ctc.yml](../../configs/rec/rec_mv3_tps_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Environment
|
||||
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. Model Training / Evaluation / Prediction
|
||||
|
||||
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||
|
||||
Training:
|
||||
|
||||
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||
|
||||
```
|
||||
#Single GPU training (long training period, not recommended)
|
||||
python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml
|
||||
|
||||
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_tps_bilstm_ctc.yml
|
||||
```
|
||||
|
||||
Evaluation:
|
||||
|
||||
```
|
||||
# GPU evaluation
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
Prediction:
|
||||
|
||||
```
|
||||
# The configuration file used for prediction must match the training
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. Inference and Deployment
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python Inference
|
||||
First, the model saved during the STAR-Net text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_STAR-Net_train.tar) ), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_starnet
|
||||
```
|
||||
|
||||
For STAR-Net text recognition model inference, the following commands can be executed:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||||
```
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++ Inference
|
||||
|
||||
With the inference model prepared, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial for C++ inference.
|
||||
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving
|
||||
|
||||
With the inference model prepared, refer to the [pdserving](../../deploy/pdserving/) tutorial for service deployment by Paddle Serving.
|
||||
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 More
|
||||
|
||||
More deployment schemes supported for STAR-Net:
|
||||
|
||||
- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
|
||||
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@inproceedings{liu2016star,
|
||||
title={STAR-Net: a spatial attention residue network for scene text recognition.},
|
||||
author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
|
||||
booktitle={BMVC},
|
||||
volume={2},
|
||||
pages={7},
|
||||
year={2016}
|
||||
}
|
||||
```
|
||||
123
doc/doc_en/algorithm_rec_crnn_en.md
Normal file
123
doc/doc_en/algorithm_rec_crnn_en.md
Normal file
@ -0,0 +1,123 @@
|
||||
# CRNN
|
||||
|
||||
- [1. Introduction](#1)
|
||||
- [2. Environment](#2)
|
||||
- [3. Model Training / Evaluation / Prediction](#3)
|
||||
- [3.1 Training](#3-1)
|
||||
- [3.2 Evaluation](#3-2)
|
||||
- [3.3 Prediction](#3-3)
|
||||
- [4. Inference and Deployment](#4)
|
||||
- [4.1 Python Inference](#4-1)
|
||||
- [4.2 C++ Inference](#4-2)
|
||||
- [4.3 Serving](#4-3)
|
||||
- [4.4 More](#4-4)
|
||||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. Introduction
|
||||
|
||||
Paper:
|
||||
> [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717)
|
||||
|
||||
> Baoguang Shi, Xiang Bai, Cong Yao
|
||||
|
||||
> IEEE, 2015
|
||||
|
||||
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|
||||
|
||||
|Model|Backbone|ACC|config|Download link|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|---|---|---|---|---|
|
||||
|CRNN|Resnet34_vd|81.04%|[configs/rec/rec_r34_vd_none_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|CRNN|MobileNetV3|77.95%|[configs/rec/rec_mv3_none_bilstm_ctc.yml](../../configs/rec/rec_mv3_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Environment
|
||||
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. Model Training / Evaluation / Prediction
|
||||
|
||||
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||
|
||||
Training:
|
||||
|
||||
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||
|
||||
```
|
||||
#Single GPU training (long training period, not recommended)
|
||||
python3 tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
|
||||
|
||||
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
|
||||
```
|
||||
|
||||
Evaluation:
|
||||
|
||||
```
|
||||
# GPU evaluation
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
Prediction:
|
||||
|
||||
```
|
||||
# The configuration file used for prediction must match the training
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. Inference and Deployment
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python Inference
|
||||
First, the model saved during the CRNN text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_CRNN_train.tar) ), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
|
||||
```
|
||||
|
||||
For CRNN text recognition model inference, the following commands can be executed:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||||
```
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++ Inference
|
||||
|
||||
With the inference model prepared, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial for C++ inference.
|
||||
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving
|
||||
|
||||
With the inference model prepared, refer to the [pdserving](../../deploy/pdserving/) tutorial for service deployment by Paddle Serving.
|
||||
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 More
|
||||
|
||||
More deployment schemes supported for CRNN:
|
||||
|
||||
- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
|
||||
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@ARTICLE{7801919,
|
||||
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
|
||||
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
||||
title={An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition},
|
||||
year={2017},
|
||||
volume={39},
|
||||
number={11},
|
||||
pages={2298-2304},
|
||||
doi={10.1109/TPAMI.2016.2646371}}
|
||||
```
|
||||
111
doc/doc_en/algorithm_rec_seed_en.md
Normal file
111
doc/doc_en/algorithm_rec_seed_en.md
Normal file
@ -0,0 +1,111 @@
|
||||
# SEED
|
||||
|
||||
- [1. Introduction](#1)
|
||||
- [2. Environment](#2)
|
||||
- [3. Model Training / Evaluation / Prediction](#3)
|
||||
- [3.1 Training](#3-1)
|
||||
- [3.2 Evaluation](#3-2)
|
||||
- [3.3 Prediction](#3-3)
|
||||
- [4. Inference and Deployment](#4)
|
||||
- [4.1 Python Inference](#4-1)
|
||||
- [4.2 C++ Inference](#4-2)
|
||||
- [4.3 Serving](#4-3)
|
||||
- [4.4 More](#4-4)
|
||||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. Introduction
|
||||
|
||||
Paper:
|
||||
> [SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition](https://arxiv.org/pdf/2005.10977.pdf)
|
||||
|
||||
> Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping
|
||||
|
||||
> CVPR, 2020
|
||||
|
||||
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|
||||
|
||||
|Model|Backbone|ACC|config|Download link|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|SEED|Aster_Resnet| 85.2% | [configs/rec/rec_resnet_stn_bilstm_att.yml](../../configs/rec/rec_resnet_stn_bilstm_att.yml) | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Environment
|
||||
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. Model Training / Evaluation / Prediction
|
||||
|
||||
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||
|
||||
Training:
|
||||
|
||||
The SEED model needs to additionally load the [language model](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) trained by FastText, and install the fasttext dependencies:
|
||||
|
||||
```
|
||||
python3 -m pip install fasttext==0.9.1
|
||||
```
|
||||
|
||||
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||
|
||||
```
|
||||
#Single GPU training (long training period, not recommended)
|
||||
python3 tools/train.py -c configs/rec/rec_resnet_stn_bilstm_att.yml
|
||||
|
||||
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_resnet_stn_bilstm_att.yml
|
||||
```
|
||||
|
||||
Evaluation:
|
||||
|
||||
```
|
||||
# GPU evaluation
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
Prediction:
|
||||
|
||||
```
|
||||
# The configuration file used for prediction must match the training
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. Inference and Deployment
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python Inference
|
||||
|
||||
Not support
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++ Inference
|
||||
|
||||
Not support
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving
|
||||
|
||||
Not support
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 More
|
||||
|
||||
Not support
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@inproceedings{qiao2020seed,
|
||||
title={Seed: Semantics enhanced encoder-decoder framework for scene text recognition},
|
||||
author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
|
||||
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
||||
pages={13528--13537},
|
||||
year={2020}
|
||||
}
|
||||
```
|
||||
Loading…
x
Reference in New Issue
Block a user