--- comments: true --- # Text Gestalt ## 1. Introduction Paper: > [Text Gestalt: Stroke-Aware Scene Text Image Super-Resolution](https://arxiv.org/pdf/2112.08171.pdf) > Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang > AAAI, 2022 Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/text-gestalt) data download instructions, the effect of the super-score algorithm on the TextZoom test set is as follows: |Model | Backbone|config|Acc|Download link| |---|---|---|---|---| |Text Gestalt|tsrn|19.28|0.6560| [configs/sr/sr_tsrn_transformer_strock.yml](../../configs/sr/sr_tsrn_transformer_strock.yml)|[train model](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar)| ## 2. Environment Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different models only requires **changing the configuration file**. ### Training Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ```bash linenums="1" # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml ``` ### Evaluation ```bash linenums="1" # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Prediction ```bash linenums="1" # The configuration file used for prediction must match the training python3 tools/infer_sr.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png ``` ![img](./images/word_52.png) After executing the command, the super-resolution result of the above image is as follows: ![img](./images/sr_word_52.png) ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar) ), you can use the following command to convert: ```bash linenums="1" python3 tools/export_model.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out ``` For Text-Gestalt super-resolution model inference, the following commands can be executed: ```bash linenums="1" python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128 ``` After executing the command, the super-resolution result of the above image is as follows: ![img](./images/sr_word_52-20240704093810101.png) ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @inproceedings{chen2022text, title={Text gestalt: Stroke-aware scene text image super-resolution}, author={Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={36}, number={1}, pages={285--293}, year={2022} } ```