--- comments: true --- # Document Image Orientation Classification Module Tutorial ## 1. Overview The Document Image Orientation Classification Module is primarily designed to distinguish the orientation of document images and correct them through post-processing. During processes such as document scanning or ID photo capturing, the device might be rotated to achieve clearer images, resulting in images with various orientations. Standard OCR pipelines may not handle these images effectively. By leveraging image classification techniques, the orientation of documents or IDs containing text regions can be pre-determined and adjusted, thereby improving the accuracy of OCR processing. ## 2. Supported Models List
Model | Model Download Links | Top-1 Acc (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Size (MB) | Description |
---|---|---|---|---|---|---|
PP-LCNet_x1_0_doc_ori | Inference Model/Pretrained Model | 99.06 | 2.31 / 0.43 | 3.37 / 1.27 | 7 | A document image classification model based on PP-LCNet_x1_0, with four categories: 0°, 90°, 180°, and 270°. |
Mode | GPU Configuration | CPU Configuration | Acceleration Technology Combination |
---|---|---|---|
Normal Mode | FP32 Precision / No TRT Acceleration | FP32 Precision / 8 Threads | PaddleInference |
High-Performance Mode | Optimal combination of precision type and acceleration strategy | FP32 Precision / 8 Threads | Optimal backend selected (Paddle/OpenVINO/TRT, etc.) |
Parameter | Description | Parameter Type | Options | Default Value |
---|---|---|---|---|
model_name |
Model name | str |
None | None |
model_dir |
Model storage path | str |
None | None |
device |
Model inference device | str |
Supports specifying the specific card number of GPU, such as "gpu:0", specific card numbers of other hardware, such as "npu:0", and CPU, such as "cpu". | gpu:0 |
use_hpip |
Whether to enable the high-performance inference plugin | bool |
None | False |
hpi_config |
High-performance inference configuration | dict | None |
None | None |
Parameter | Description | Parameter Type | Options | Default Value |
---|---|---|---|---|
input |
Data to be predicted, supporting multiple input types | Python Var /str /list |
|
None |
batch_size |
Batch size | int |
Any integer | 1 |
Method | Description | Parameter | Parameter Type | Description | Default Value |
---|---|---|---|---|---|
print() |
Print the result to the terminal | format_json |
bool |
Whether to format the output content using JSON indentation |
True |
indent |
int |
Specify the indentation level to beautify the output JSON data and make it more readable. It is only valid when format_json is True . |
4 | ||
ensure_ascii |
bool |
Control whether to escape non-ASCII characters as Unicode . When set to True , all non-ASCII characters will be escaped; when set to False , the original characters will be retained. It is only valid when format_json is True . |
False |
||
save_to_json() |
Save the result as a file in json format |
save_path |
str |
The file path to save. When it is a directory, the saved file name is consistent with the naming of the input file type. | None |
indent |
int |
Specify the indentation level to beautify the output JSON data and make it more readable. It is only valid when format_json is True . |
4 | ||
ensure_ascii |
bool |
Control whether to escape non-ASCII characters as Unicode . When set to True , all non-ASCII characters will be escaped; when set to False , the original characters will be retained. It is only valid when format_json is True . |
False |
||
save_to_img() |
Save the result as a file in image format | save_path |
str |
The file path to save. When it is a directory, the saved file name is consistent with the naming of the input file type. | None |
Attribute | Description |
---|---|
json |
Get the prediction result in json format |
img |
Get the visualization image in dict format |