--- comments: true --- # Table Cell Detection Module Usage Tutorial ## I. Overview The Table Cell Detection Module is a key component of the table recognition task, responsible for locating and marking each cell region in table images. The performance of this module directly affects the accuracy and efficiency of the entire table recognition process. The Table Cell Detection Module typically outputs bounding boxes for each cell region, which are then passed as input to the table recognition pipeline for further processing. ## II. Supported Model List
Model | Model Download Link | mAP(%) | GPU Inference Time (ms) [Regular Mode / High-Performance Mode] |
CPU Inference Time (ms) [Regular Mode / High-Performance Mode] |
Model Storage Size (M) | Description |
---|---|---|---|---|---|---|
RT-DETR-L_wired_table_cell_det | Inference Model/Training Model | 82.7 | 35.00 / 10.45 | 495.51 / 495.51 | 124M | RT-DETR is a real-time end-to-end object detection model. The Baidu PaddlePaddle Vision team pre-trained on a self-built table cell detection dataset based on the RT-DETR-L as the base model, achieving good performance in detecting both wired and wireless table cells. |
RT-DETR-L_wireless_table_cell_det | Inference Model/Training Model |
Mode | GPU Configuration | CPU Configuration | Acceleration Technology Combination |
---|---|---|---|
Regular Mode | FP32 Precision / No TRT Acceleration | FP32 Precision / 8 Threads | PaddleInference |
High-Performance Mode | Optimal combination of prior precision type and acceleration strategy | FP32 Precision / 8 Threads | Choose the optimal prior backend (Paddle/OpenVINO/TRT, etc.) |
[xmin, ymin, xmax, ymax]
The visualized image is as follows:
Parameter | Description | Type | Options | Default Value |
---|---|---|---|---|
model_name |
Model Name | str |
None | None |
model_dir |
Model Storage Path | str |
None | None |
device |
Model Inference Device | str |
Supports specifying specific GPU card numbers, such as “gpu:0”, specific hardware card numbers, such as “npu:0”, CPU as “cpu”. | gpu:0 |
use_hpip |
Whether to enable high-performance inference plugin | bool |
None | False |
hpi_config |
High-Performance Inference Configuration | dict | None |
None | None |
img_size |
Input image size; if not specified, the PaddleX official model configuration will be used by default | int/list |
|
None |
threshold |
Threshold for filtering out low-confidence prediction results; if not specified, the PaddleX official model configuration will be used by default. In table cell detection tasks, appropriately lowering the threshold may help achieve more accurate results | float/dict |
|
None |
Parameter | Description | Type | Options | Default Value |
---|---|---|---|---|
input |
Data to be predicted, supports multiple input types | Python Var /str /list |
|
None |
batch_size |
Batch Size | int |
Any integer | 1 |
threshold |
Threshold for filtering out low-confidence prediction results; if not specified, the threshold parameter specified in create_model will be used by default, and if create_model is not specified, the PaddleX official model configuration will be used |
float/dict |
|
None |
Method | Description | Parameter | Type | Parameter Description | Default Value |
---|---|---|---|---|---|
print() |
Print result to terminal | format_json |
bool |
Whether to format the output content using JSON indentation |
True |
indent |
int |
Specifies the indentation level to beautify the output JSON data, making it more readable, effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Controls whether to escape non-ASCII characters into Unicode . When set to True , all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True |
False |
||
save_to_json() |
Save the result as a json format file | save_path |
str |
The path to save the file. When specified as a directory, the saved file is named consistent with the input file type. | None |
indent |
int |
Specifies the indentation level to beautify the output JSON data, making it more readable, effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Controls whether to escape non-ASCII characters into Unicode . When set to True , all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True |
False |
||
save_to_img() |
Save the result as an image format file | save_path |
str |
The path to save the file. When specified as a directory, the saved file is named consistent with the input file type. | None |
Attribute | Description |
---|---|
json |
Get the prediction result in json format |
img |
Get the visualized image |