--- comments: true --- # Layout Detection Module Tutorial ## I. Overview The core task of structure analysis is to parse and segment the content of input document images. By identifying different elements in the image (such as text, charts, images, etc.), they are classified into predefined categories (e.g., pure text area, title area, table area, image area, list area, etc.), and the position and size of these regions in the document are determined. ## II. Supported Model List * The layout detection model includes 20 common categories: document title, paragraph title, text, page number, abstract, table, references, footnotes, header, footer, algorithm, formula, formula number, image, table, seal, figure_table title, chart, and sidebar text and lists of references
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PP-DocLayout_plus-L | Inference Model/Training Model | 83.2 | 34.6244 / 10.3945 | 510.57 / - | 126.01 M | A higher-precision layout area localization model trained on a self-built dataset containing Chinese and English papers, PPT, multi-layout magazines, contracts, books, exams, ancient books and research reports using RT-DETR-L |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PP-DocBlockLayout | Inference Model/Training Model | 95.9 | 34.6244 / 10.3945 | 510.57 / - | 123.92 M | A layout block localization model trained on a self-built dataset containing Chinese and English papers, PPT, multi-layout magazines, contracts, books, exams, ancient books and research reports using RT-DETR-L |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PP-DocLayout-L | Inference Model/Training Model | 90.4 | 34.6244 / 10.3945 | 510.57 / - | 123.76 M | A high-precision layout area localization model trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using RT-DETR-L. |
PP-DocLayout-M | Inference Model/Training Model | 75.2 | 13.3259 / 4.8685 | 44.0680 / 44.0680 | 22.578 | A layout area localization model with balanced precision and efficiency, trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using PicoDet-L. |
PP-DocLayout-S | Inference Model/Training Model | 70.9 | 8.3008 / 2.3794 | 10.0623 / 9.9296 | 4.834 | A high-efficiency layout area localization model trained on a self-built dataset containing Chinese and English papers, magazines, contracts, books, exams, and research reports using PicoDet-S. |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PicoDet_layout_1x_table | Inference Model/Training Model | 97.5 | 8.02 / 3.09 | 23.70 / 20.41 | 7.4 M | A high-efficiency layout area localization model trained on a self-built dataset using PicoDet-1x, capable of detecting table regions. |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PicoDet-S_layout_3cls | Inference Model/Training Model | 88.2 | 8.99 / 2.22 | 16.11 / 8.73 | 4.8 | A high-efficiency layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-S. |
PicoDet-L_layout_3cls | Inference Model/Training Model | 89.0 | 13.05 / 4.50 | 41.30 / 41.30 | 22.6 | A balanced efficiency and precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-L. |
RT-DETR-H_layout_3cls | Inference Model/Training Model | 95.8 | 114.93 / 27.71 | 947.56 / 947.56 | 470.1 | A high-precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using RT-DETR-H. |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PicoDet_layout_1x | Inference Model/Training Model | 97.8 | 9.03 / 3.10 | 25.82 / 20.70 | 7.4 | A high-efficiency English document layout area localization model trained on the PubLayNet dataset using PicoDet-1x. |
Model | Model Download Link | mAP(0.5) (%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|---|
PicoDet-S_layout_17cls | Inference Model/Training Model | 87.4 | 9.11 / 2.12 | 15.42 / 9.12 | 4.8 | A high-efficiency layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-S. |
PicoDet-L_layout_17cls | Inference Model/Training Model | 89.0 | 13.50 / 4.69 | 43.32 / 43.32 | 22.6 | A balanced efficiency and precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using PicoDet-L. |
RT-DETR-H_layout_17cls | Inference Model/Training Model | 98.3 | 115.29 / 104.09 | 995.27 / 995.27 | 470.2 | A high-precision layout area localization model trained on a self-built dataset of Chinese and English papers, magazines, and research reports using RT-DETR-H. |
Mode | GPU Configuration | CPU Configuration | Acceleration Technology Combination |
---|---|---|---|
Normal Mode | FP32 Precision / No TRT Acceleration | FP32 Precision / 8 Threads | PaddleInference |
High-Performance Mode | Optimal combination of pre-selected precision types and acceleration strategies | FP32 Precision / 8 Threads | Pre-selected optimal backend (Paddle/OpenVINO/TRT, etc.) |
[xmin, ymin, xmax, ymax]
.
The visualized image is as follows:
Parameter | Description | Type | Default |
---|---|---|---|
model_name |
Model name | str |
PP-DocLayout-L |
model_dir |
Model storage path | str |
None |
device |
Device(s) to use for inference. Examples: cpu , gpu , npu , gpu:0 , gpu:0,1 .If multiple devices are specified, inference will be performed in parallel. Note that parallel inference is not always supported. By default, GPU 0 will be used if available; otherwise, the CPU will be used. |
str |
None |
enable_hpi |
Whether to use the high performance inference. | bool |
False |
use_tensorrt |
Whether to use the Paddle Inference TensorRT subgraph engine. For Paddle with CUDA version 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6. For Paddle with CUDA version 12.6, the compatible TensorRT version is 10.x (x>=5), and it is recommended to install TensorRT 10.5.0.18. | bool |
False |
precision |
Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine. Options: fp32 , fp16 , etc. |
str |
fp32 |
enable_mkldnn |
Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set. | bool |
True |
mkldnn_cache_capacity |
MKL-DNN cache capacity. | int |
10 |
cpu_threads |
Number of threads to use for inference on CPUs. | int |
10 |
img_size |
Input image size; if not specified, the default 800x800 will be used by PP-DocLayout_plus-L Examples:
|
int/list/None |
None |
threshold |
Threshold for filtering low-confidence predictions; defaults to 0.5 if not specified Examples:
|
float/dict/None |
None |
layout_nms |
Whether to use NMS post-processing to filter overlapping boxes; if not specified, the default PaddleOCR official model configuration will be used Examples:
|
bool/None |
None |
layout_unclip_ratio |
Scaling factor for the side length of the detection box; if not specified, the default PaddleX official model configuration will be used Examples:
|
float/list/dict/None |
None |
layout_merge_bboxes_mode |
Bounding box merge mode for model output; ; if not specified, the default PaddleOCR official model configuration will be used. Examples:
|
string/dict/None |
None |
Parameter | Description | Type | Default |
---|---|---|---|
input |
Input data to be predicted. Required. Supports multiple input types:
|
Python Var|str|list |
|
batch_size |
Batch size, positive integer. | int |
1 |
threshold |
Threshold for filtering low-confidence predictions. If not specified, the model's default will be used. Examples:
|
float/dict/None |
None |
layout_nms |
Whether to use NMS post-processing to filter overlapping boxes Examples:
|
bool/None |
None |
layout_unclip_ratio |
Scaling ratio for the detected box size. If not specified, defaults to 1.0 Examples:
|
float/list/dict/None |
None |
layout_merge_bboxes_mode |
Merge mode for detected bounding boxes. Defaults to union if not specifiedExamples:
|
string/dict/None |
None |
* If None
is passed to predict()
, the value set during model instantiation (__init__
) will be used; if it was also None
there, the framework defaults are applied:
threshold=0.5
, layout_nms=False
, layout_unclip_ratio=1.0
, layout_merge_bboxes_mode="union"
.
Method | Method Description | Parameters | Parameter type | Parameter Description | Default value |
---|---|---|---|---|---|
print() |
Print the result to the terminal | format_json |
bool |
Do you want to use JSON indentation formatting for the output content |
True |
indent |
int |
Specify the indentation level to enhance the readability of the JSON data output, only valid when format_json is True |
4 | ||
ensure_ascii |
bool |
Control whether to escape non ASCII characters to Unicode characters. When set to True , all non ASCII characters will be escaped; False preserves the original characters and is only valid when format_json is True |
False |
||
save_to_json() |
Save the result as a JSON format file | save_path |
str |
The saved file path, when it is a directory, the name of the saved file is consistent with the name of the input file type | None |
indent |
int |
Specify the indentation level to enhance the readability of the JSON data output, only valid when format_json is True |
4 | ||
ensure_ascii |
bool |
Control whether to escape non ASCII characters to Unicode characters. When set to True , all non ASCII characters will be escaped; False preserves the original characters and is only valid whenformat_json is True |
False |
||
save_to_img() |
Save the results as an image format file | save_path |
str |
The saved file path, when it is a directory, the name of the saved file is consistent with the name of the input file type | None |
Attribute | Description |
---|---|
json |
Get the prediction result in json format |
img |
Get the visualized image in dict format |