# LaTeX-OCR - [1. Introduction](#1) - [2. Environment](#2) - [3. Model Training / Evaluation / Prediction](#3) - [3.1 Pickle File Generation](#3-1) - [3.2 Training](#3-2) - [3.3 Evaluation](#3-3) - [3.4 Prediction](#3-4) - [4. Inference and Deployment](#4) - [4.1 Python Inference](#4-1) - [4.2 C++ Inference](#4-2) - [4.3 Serving](#4-3) - [4.4 More](#4-4) - [5. FAQ](#5) ## 1. Introduction Original Project: > [https://github.com/lukas-blecher/LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) Using LaTeX-OCR printed mathematical expression recognition datasets for training, and evaluating on its test sets, the algorithm reproduction effect is as follows: | Model | Backbone |config| BLEU score | normed edit distance | ExpRate |Download link| |-----------|----------| ---- |:-----------:|:---------------------:|:---------:| ----- | | LaTeX-OCR | Hybrid ViT |[rec_latex_ocr.yml](../../configs/rec/rec_latex_ocr.yml)| 0.8821 | 0.0823 | 40.01% |[trained model](https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_train.tar)| ## 2. Environment Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. Pickle File Generation: Download formulae.zip and math.txt in [Google Drive](https://drive.google.com/drive/folders/13CA4vAmOmD_I_dSbvLp-Lf0s6KiaNfuO), and then use the following command to generate the pickle file. ```shell # Create a LaTeX-OCR dataset directory mkdir -p train_data/LaTeXOCR # Unzip formulae.zip and copy math.txt unzip -d train_data/LaTeXOCR path/formulae.zip cp path/math.txt train_data/LaTeXOCR # Convert the original .txt file to a .pkl file to group images of different scales # Training set conversion python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/train --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ # Validation set conversion python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/val --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ # Test set conversion python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/test --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ ``` Training: Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ``` #Single GPU training (Default training method) python3 tools/train.py -c configs/rec/rec_latex_ocr.yml #Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_latex_ocr.yml ``` Evaluation: ``` # GPU evaluation # Validation set evaluation python3 tools/eval.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Metric.cal_blue_score=True # Test set evaluation python3 tools/eval.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Metric.cal_blue_score=True Eval.dataset.data=./train_data/LaTeXOCR/latexocr_test.pkl ``` Prediction: ``` # The configuration file used for prediction must match the training python3 tools/infer_rec.py -c configs/rec/rec_latex_ocr.yml -o Architecture.Backbone.is_predict=True Architecture.Backbone.is_export=True Architecture.Head.is_export=True Global.infer_img='./doc/datasets/pme_demo/0000013.png' Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams ``` ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the LaTeX-OCR printed mathematical expression recognition training process is converted into an inference model. you can use the following command to convert: ``` python3 tools/export_model.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_latex_ocr_infer/ Architecture.Backbone.is_predict=True Architecture.Backbone.is_export=True Architecture.Head.is_export=True # The default output max length of the model is 512. ``` For LaTeX-OCR printed mathematical expression recognition model inference, the following commands can be executed: ``` python3 tools/infer/predict_rec.py --image_dir='./doc/datasets/pme_demo/0000295.png' --rec_algorithm="LaTeXOCR" --rec_batch_num=1 --rec_model_dir="./inference/rec_latex_ocr_infer/" --rec_char_dict_path="./ppocr/utils/dict/latex_ocr_tokenizer.json" ``` ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ```