--- comments: true --- # SATRN ## 1. Introduction 论文信息: > [On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention](https://arxiv.org/abs/1910.04396) > Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee > CVPR, 2020 Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows: |Model|Backbone|config|Acc|Download link| | --- | --- | --- | --- | --- | |SATRN|ShallowCNN|88.05%|[configs/rec/rec_satrn.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_satrn.yml)|[训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a)| ## 2. Environment Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. ### Training Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ```bash linenums="1" # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/rec/rec_satrn.yml # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_satrn.yml ``` ### Evaluation ```bash linenums="1" # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Prediction ```bash linenums="1" # The configuration file used for prediction must match the training python3 tools/infer_rec.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png ``` ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the SATRN text recognition training process is converted into an inference model. ( [Model download link](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) ), you can use the following command to convert: ```bash linenums="1" python3 tools/export_model.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model=./rec_satrn_train/best_accuracy Global.save_inference_dir=./inference/rec_satrn ``` For SATRN text recognition model inference, the following commands can be executed: ```bash linenums="1" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_satrn/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SATRN" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False ``` ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @article{lee2019recognizing, title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention}, author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee}, year={2019}, eprint={1910.04396}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```