--- comments: true --- # Text Gestalt ## 1. Introduction Paper: > [Scene Text Telescope: Text-Focused Scene Image Super-Resolution](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Scene_Text_Telescope_Text-Focused_Scene_Image_Super-Resolution_CVPR_2021_paper.pdf) > Chen, Jingye, Bin Li, and Xiangyang Xue > CVPR, 2021 Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/scene-text-telescope) data download instructions, the effect of the super-score algorithm on the TextZoom test set is as follows: |Model|Backbone|config|Acc|Download link| |---|---|---|---|---| |Text Gestalt|tsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/sr/sr_telescope.yml)|[train model](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)| The [TextZoom dataset](https://paddleocr.bj.bcebos.com/dataset/TextZoom.tar) comes from two superfraction data sets, RealSR and SR-RAW, both of which contain LR-HR pairs. TextZoom has 17367 pairs of training data and 4373 pairs of test data. ## 2. Environment Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different models only requires **changing the configuration file**. ### Training Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ```bash linenums="1" # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/sr/sr_telescope.yml # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_telescope.yml ``` ### Evaluation ```bash linenums="1" # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Prediction ```bash linenums="1" # The configuration file used for prediction must match the training python3 tools/infer_sr.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png ``` ![img](./images/word_52-20240704094304807.png) After executing the command, the super-resolution result of the above image is as follows: ![img](./images/sr_word_52-20240704094309205.png) ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/contribution/Telescope_train.tar.gz) ), you can use the following command to convert: ```bash linenums="1" python3 tools/export_model.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out ``` For Text-Telescope super-resolution model inference, the following commands can be executed: ```bash linenums="1" python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128 ``` After executing the command, the super-resolution result of the above image is as follows: ![img](./images/sr_word_52-20240704094309205.png) ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @INPROCEEDINGS{9578891, author={Chen, Jingye and Li, Bin and Xue, Xiangyang}, booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution}, year={2021}, volume={}, number={}, pages={12021-12030}, doi={10.1109/CVPR46437.2021.01185}} ```