--- comments: true --- # RFL ## 1. Introduction Paper: > [Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition](https://arxiv.org/abs/2105.06229.pdf) > Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, and Wenming Tan > ICDAR, 2021 Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows: |Model|Backbone|config|Acc|Download link| | --- | --- | --- | --- | --- | |RFL-CNT|ResNetRFL|[rec_resnet_rfl_visual.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_resnet_rfl_visual.yml)|93.40%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_visual_train.tar)| |RFL-Att|ResNetRFL|[rec_resnet_rfl_att.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_resnet_rfl_att.yml)|88.63%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_att_train.tar)| ## 2. Environment Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code. ## 3. Model Training / Evaluation / Prediction PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. ### Training Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ```bash linenums="1" #step1:train the CNT branch # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml #step2:joint training of CNT and Att branches # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Evaluation ```bash linenums="1" # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Prediction ```bash linenums="1" # The configuration file used for prediction must match the training python3 tools/infer_rec.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model={path/to/weights}/best_accuracy ``` ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the RFL text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)) ), you can use the following command to convert: ```bash linenums="1" python3 tools/export_model.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_resnet_rfl_att ``` **Note:** - If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file. - If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file. After the conversion is successful, there are three files in the directory: ```text linenums="1" /inference/rec_resnet_rfl_att/ ├── inference.pdiparams ├── inference.pdiparams.info └── inference.pdmodel ``` For RFL text recognition model inference, the following commands can be executed: ```bash linenums="1" python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_resnet_rfl_att/' --rec_algorithm='RFL' --rec_image_shape='1,32,100' ``` ![img](./images/word_10.png) After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows: The result is as follows: ```bash linenums="1" Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999927282333374) ``` ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @article{2021Reciprocal, title = {Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition}, author = {Jiang, H. and Xu, Y. and Cheng, Z. and Pu, S. and Niu, Y. and Ren, W. and Wu, F. and Tan, W. }, booktitle = {ICDAR}, year = {2021}, url = {https://arxiv.org/abs/2105.06229} } ```