--- comments: true --- # PasreQ ## 1. Introduction Paper: > [Scene Text Recognition with Permuted Autoregressive Sequence Models](https://arxiv.org/abs/2207.06966) > Darwin Bautista, Rowel Atienza > ECCV, 2021 Using real datasets (real) and synthetic datasets (synth) for training respectively,and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets. - The real datasets include COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR and OpenVINO datasets. - The synthesis datasets include MJSynth and SynthText datasets. the algorithm reproduction effect is as follows: |Training Dataset|Model|Backbone|config|Acc|Download link| | --- | --- | --- | --- | --- | --- | |Synth|ParseQ|VIT|[rec_vit_parseq.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_vit_parseq.yml)|91.24%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz)| |Real|ParseQ|VIT|[rec_vit_parseq.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/rec/rec_vit_parseq.yml)|94.74%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz)| ## 2. Environment Please refer to ["Environment Preparation"](../../ppocr/environment.en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](../../ppocr/blog/clone.en.md)to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](../../ppocr/model_train/recognition.en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. ### Training Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ```bash linenums="1" # Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/rec/rec_vit_parseq.yml # Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml ``` ### Evaluation ```bash linenums="1" # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### Prediction ```bash linenums="1" # The configuration file used for prediction must match the training python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png ``` ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the SAR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz) ), you can use the following command to convert: ```bash linenums="1" python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq ``` For SAR text recognition model inference, the following commands can be executed: ```bash linenums="1" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False ``` ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @InProceedings{bautista2022parseq, title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, author={Bautista, Darwin and Atienza, Rowel}, booktitle={European Conference on Computer Vision}, pages={178--196}, month={10}, year={2022}, publisher={Springer Nature Switzerland}, address={Cham}, doi={10.1007/978-3-031-19815-1_11}, url={https://doi.org/10.1007/978-3-031-19815-1_11} } ```