import numpy as np import cv2 def shrink_polygon_py(polygon, shrink_ratio): """ 对框进行缩放,返回去的比例为1/shrink_ratio 即可 """ cx = polygon[:, 0].mean() cy = polygon[:, 1].mean() polygon[:, 0] = cx + (polygon[:, 0] - cx) * shrink_ratio polygon[:, 1] = cy + (polygon[:, 1] - cy) * shrink_ratio return polygon def shrink_polygon_pyclipper(polygon, shrink_ratio): from shapely.geometry import Polygon import pyclipper polygon_shape = Polygon(polygon) distance = ( polygon_shape.area * (1 - np.power(shrink_ratio, 2)) / polygon_shape.length ) subject = [tuple(l) for l in polygon] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrunk = padding.Execute(-distance) if shrunk == []: shrunk = np.array(shrunk) else: shrunk = np.array(shrunk[0]).reshape(-1, 2) return shrunk class MakeShrinkMap: r""" Making binary mask from detection data with ICDAR format. Typically following the process of class `MakeICDARData`. """ def __init__(self, min_text_size=8, shrink_ratio=0.4, shrink_type="pyclipper"): shrink_func_dict = { "py": shrink_polygon_py, "pyclipper": shrink_polygon_pyclipper, } self.shrink_func = shrink_func_dict[shrink_type] self.min_text_size = min_text_size self.shrink_ratio = shrink_ratio def __call__(self, data: dict) -> dict: """ 从scales中随机选择一个尺度,对图片和文本框进行缩放 :param data: {'img':,'text_polys':,'texts':,'ignore_tags':} :return: """ image = data["img"] text_polys = data["text_polys"] ignore_tags = data["ignore_tags"] h, w = image.shape[:2] text_polys, ignore_tags = self.validate_polygons(text_polys, ignore_tags, h, w) gt = np.zeros((h, w), dtype=np.float32) mask = np.ones((h, w), dtype=np.float32) for i in range(len(text_polys)): polygon = text_polys[i] height = max(polygon[:, 1]) - min(polygon[:, 1]) width = max(polygon[:, 0]) - min(polygon[:, 0]) if ignore_tags[i] or min(height, width) < self.min_text_size: cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0) ignore_tags[i] = True else: shrunk = self.shrink_func(polygon, self.shrink_ratio) if shrunk.size == 0: cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0) ignore_tags[i] = True continue cv2.fillPoly(gt, [shrunk.astype(np.int32)], 1) data["shrink_map"] = gt data["shrink_mask"] = mask return data def validate_polygons(self, polygons, ignore_tags, h, w): """ polygons (numpy.array, required): of shape (num_instances, num_points, 2) """ if len(polygons) == 0: return polygons, ignore_tags assert len(polygons) == len(ignore_tags) for polygon in polygons: polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1) polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1) for i in range(len(polygons)): area = self.polygon_area(polygons[i]) if abs(area) < 1: ignore_tags[i] = True if area > 0: polygons[i] = polygons[i][::-1, :] return polygons, ignore_tags def polygon_area(self, polygon): return cv2.contourArea(polygon) # edge = 0 # for i in range(polygon.shape[0]): # next_index = (i + 1) % polygon.shape[0] # edge += (polygon[next_index, 0] - polygon[i, 0]) * (polygon[next_index, 1] - polygon[i, 1]) # # return edge / 2. if __name__ == "__main__": from shapely.geometry import Polygon import pyclipper polygon = np.array([[0, 0], [100, 10], [100, 100], [10, 90]]) a = shrink_polygon_py(polygon, 0.4) print(a) print(shrink_polygon_py(a, 1 / 0.4)) b = shrink_polygon_pyclipper(polygon, 0.4) print(b) poly = Polygon(b) distance = poly.area * 1.5 / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(b, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) bounding_box = cv2.minAreaRect(expanded) points = cv2.boxPoints(bounding_box) print(points)