--- comments: true --- # 表格分类模块使用教程 ## 一、概述 表格分类模块是计算机视觉系统中的关键组成部分,负责对输入的表格图像进行分类,该模块的性能直接影响到整个表格识别过程的准确性和效率。表格分类模块通常会接收表格图像作为输入,然后通过深度学习算法,根据图像的特性和内容,将其分类到预定义的类别中,例如有线表和无线表。表格分类模块的分类结果将作为输出,供表格识别相关产线使用。 ## 二、支持模型列表
模型模型下载链接 Top1 Acc(%) GPU推理耗时(ms)
[常规模式 / 高性能模式]
CPU推理耗时(ms)
[常规模式 / 高性能模式]
模型存储大小 (M)
PP-LCNet_x1_0_table_cls推理模型/训练模型 94.2 2.35 / 0.47 4.03 / 1.35 6.6M
测试环境说明:
模式 GPU配置 CPU配置 加速技术组合
常规模式 FP32精度 / 无TRT加速 FP32精度 / 8线程 PaddleInference
高性能模式 选择先验精度类型和加速策略的最优组合 FP32精度 / 8线程 选择先验最优后端(Paddle/OpenVINO/TRT等)
## 三、快速开始 > ❗ 在快速开始前,请先安装 PaddleOCR 的 wheel 包,详细请参考 [安装教程](../installation.md)。 使用一行命令即可快速体验: ```bash paddleocr table_classification -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg ``` 您也可以将表格分类的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例图片](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg)到本地。 ```python from paddleocr import TableClassification model = TableClassification(model_name="PP-LCNet_x1_0_table_cls") output = model.predict("table_recognition.jpg", batch_size=1) for res in output: res.print(json_format=False) res.save_to_json("./output/res.json") ``` 运行后,得到的结果为: ``` {'res': {'input_path': 'table_recognition.jpg', 'page_index': None, 'class_ids': array([0, 1], dtype=int32), 'scores': array([0.84421, 0.15579], dtype=float32), 'label_names': ['wired_table', 'wireless_table']}} ``` 运行结果参数含义如下: - `input_path`:表示输入图片的路径 - `page_index`:如果输入是PDF文件,则表示当前是PDF的第几页,否则为 `None` - `class_ids`:表示预测结果的类别id - `scores`:表示预测结果的置信度 - `label_names`:表示预测结果的类别名 可视化图像如下: 相关方法、参数等说明如下: * `TableClassification`实例化表格分类模型(此处以`PP-LCNet_x1_0_table_cls`为例),具体说明如下:
参数 参数说明 参数类型 默认值
model_name 模型名称 str None
model_dir 模型存储路径 str None
device 用于推理的设备。
例如:cpugpunpugpu:0gpu:0,1
如指定多个设备,将进行并行推理。
默认情况下,优先使用 GPU 0;若不可用则使用 CPU。
str None
enable_hpi 是否启用高性能推理。 bool False
use_tensorrt 是否启用 Paddle Inference 的 TensorRT 子图引擎。
对于 CUDA 11.8 版本的飞桨,兼容的 TensorRT 版本为 8.x(x>=6),建议安装 TensorRT 8.6.1.6。
对于 CUDA 12.6 版本的飞桨,兼容的 TensorRT 版本为 10.x(x>=5),建议安装 TensorRT 10.5.0.18。
bool False
min_subgraph_size 当使用 Paddle Inference 的 TensorRT 子图引擎时,设置的最小子图大小。 int 3
precision 当使用 Paddle Inference 的 TensorRT 子图引擎时设置的计算精度。
可选项:fp32fp16 等。
str fp32
enable_mkldnn 是否启用 MKL-DNN 加速推理。如果 MKL-DNN 不可用或模型不支持通过 MKL-DNN 加速,即使设置了此标志,也不会使用加速。
bool True
cpu_threads 在 CPU 上推理时使用的线程数量。 int 10
* 其中,`model_name` 必须指定,在此基础上,指定 `model_dir` 时,使用用户自定义的模型。 * 调用表格分类模型的 `predict()` 方法进行推理预测,该方法会返回一个结果列表。另外,本模块还提供了 `predict_iter()` 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 `predict_iter()` 返回的是一个 `generator`,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。`predict()` 方法参数有 `input` 和 `batch_size`,具体说明如下:
参数 参数说明 参数类型 默认值
input 待预测数据,支持多种输入类型,必填。
  • Python Var:如 numpy.ndarray 表示的图像数据
  • str:如图像文件或者PDF文件的本地路径:/root/data/img.jpg如URL链接,如图像文件或PDF文件的网络URL:示例如本地目录,该目录下需包含待预测图像,如本地路径:/root/data/(当前不支持目录中包含PDF文件的预测,PDF文件需要指定到具体文件路径)
  • List:列表元素需为上述类型数据,如[numpy.ndarray, numpy.ndarray]["/root/data/img1.jpg", "/root/data/img2.jpg"]["/root/data1", "/root/data2"]
Python Var|str|list
batch_size 批大小,可设置为任意正整数。 int 1
* 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为`json`文件的操作:
方法 方法说明 参数 参数类型 参数说明 默认值
print() 打印结果到终端 format_json bool 是否对输出内容进行使用 JSON 缩进格式化 True
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_json() 将结果保存为json格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
* 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性 属性说明
json 获取预测的json格式的结果
img 获取可视化图像
## 四、二次开发 由于 PaddleOCR 并不直接提供表格分类模块的训练,因此,如果需要训练表格分类模型,可以参考 [PaddleX 表格分类模块二次开发](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/table_classification.html#_5)部分进行训练。训练后的模型可以无缝集成到 PaddleOCR 的 API 中进行推理。 ## 五、FAQ