mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-26 21:24:27 +00:00

* Fix docs * update performance * update performance * Fix docs * update performance * update performance * Update docs * Update tensorrt docs * update performance * update performance * update performance * update performance * update performance * modify chart recognition * modify seal recognition * Add resource notice * Fix mcp docs * Fix doc * Fix name * update performance * Fix docs * Fix docs * Refactor MCP server docs --------- Co-authored-by: Bobholamovic <mhlin425@whu.edu.cn> Co-authored-by: Bobholamovic <bob1998425@hotmail.com>
152 lines
5.3 KiB
Python
152 lines
5.3 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddlex.inference import PaddlePredictorOption
|
|
from paddlex.utils.device import get_default_device, parse_device
|
|
|
|
from ._constants import (
|
|
DEFAULT_CPU_THREADS,
|
|
DEFAULT_DEVICE,
|
|
DEFAULT_ENABLE_MKLDNN,
|
|
DEFAULT_MKLDNN_CACHE_CAPACITY,
|
|
DEFAULT_PRECISION,
|
|
DEFAULT_USE_TENSORRT,
|
|
SUPPORTED_PRECISION_LIST,
|
|
)
|
|
from ._utils.cli import str2bool
|
|
|
|
|
|
def parse_common_args(kwargs, *, default_enable_hpi):
|
|
default_vals = {
|
|
"device": DEFAULT_DEVICE,
|
|
"enable_hpi": default_enable_hpi,
|
|
"use_tensorrt": DEFAULT_USE_TENSORRT,
|
|
"precision": DEFAULT_PRECISION,
|
|
"enable_mkldnn": DEFAULT_ENABLE_MKLDNN,
|
|
"mkldnn_cache_capacity": DEFAULT_MKLDNN_CACHE_CAPACITY,
|
|
"cpu_threads": DEFAULT_CPU_THREADS,
|
|
}
|
|
|
|
unknown_names = kwargs.keys() - default_vals.keys()
|
|
for name in unknown_names:
|
|
raise ValueError(f"Unknown argument: {name}")
|
|
|
|
kwargs = {**default_vals, **kwargs}
|
|
|
|
if kwargs["precision"] not in SUPPORTED_PRECISION_LIST:
|
|
raise ValueError(
|
|
f"Invalid precision: {kwargs['precision']}. Supported values are: {SUPPORTED_PRECISION_LIST}."
|
|
)
|
|
|
|
kwargs["use_pptrt"] = kwargs.pop("use_tensorrt")
|
|
kwargs["pptrt_precision"] = kwargs.pop("precision")
|
|
|
|
return kwargs
|
|
|
|
|
|
def prepare_common_init_args(model_name, common_args):
|
|
device = common_args["device"]
|
|
if device is None:
|
|
device = get_default_device()
|
|
device_type, device_ids = parse_device(device)
|
|
if device_ids is not None:
|
|
device_id = device_ids[0]
|
|
else:
|
|
device_id = None
|
|
|
|
init_kwargs = {}
|
|
init_kwargs["use_hpip"] = common_args["enable_hpi"]
|
|
init_kwargs["hpi_config"] = {
|
|
"device_type": device_type,
|
|
"device_id": device_id,
|
|
}
|
|
|
|
pp_option = PaddlePredictorOption(
|
|
model_name, device_type=device_type, device_id=device_id
|
|
)
|
|
if device_type == "gpu":
|
|
if common_args["use_pptrt"]:
|
|
if common_args["pptrt_precision"] == "fp32":
|
|
pp_option.run_mode = "trt_fp32"
|
|
else:
|
|
assert common_args["pptrt_precision"] == "fp16", common_args[
|
|
"pptrt_precision"
|
|
]
|
|
pp_option.run_mode = "trt_fp16"
|
|
else:
|
|
pp_option.run_mode = "paddle"
|
|
elif device_type == "cpu":
|
|
enable_mkldnn = common_args["enable_mkldnn"]
|
|
if enable_mkldnn:
|
|
pp_option.run_mode = "mkldnn"
|
|
pp_option.mkldnn_cache_capacity = common_args["mkldnn_cache_capacity"]
|
|
else:
|
|
pp_option.run_mode = "paddle"
|
|
pp_option.cpu_threads = common_args["cpu_threads"]
|
|
else:
|
|
pp_option.run_mode = "paddle"
|
|
init_kwargs["pp_option"] = pp_option
|
|
|
|
return init_kwargs
|
|
|
|
|
|
def add_common_cli_opts(parser, *, default_enable_hpi, allow_multiple_devices):
|
|
if allow_multiple_devices:
|
|
help_ = "Device(s) to use for inference, e.g., `cpu`, `gpu`, `npu`, `gpu:0`, `gpu:0,1`. If multiple devices are specified, inference will be performed in parallel. Note that parallel inference is not always supported. By default, GPU 0 will be used if available; otherwise, the CPU will be used."
|
|
else:
|
|
help_ = "Device to use for inference, e.g., `cpu`, `gpu`, `npu`, `gpu:0`. By default, GPU 0 will be used if available; otherwise, the CPU will be used."
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default=DEFAULT_DEVICE,
|
|
help=help_,
|
|
)
|
|
parser.add_argument(
|
|
"--enable_hpi",
|
|
type=str2bool,
|
|
default=default_enable_hpi,
|
|
help="Enable the high performance inference.",
|
|
)
|
|
parser.add_argument(
|
|
"--use_tensorrt",
|
|
type=str2bool,
|
|
default=DEFAULT_USE_TENSORRT,
|
|
help="Whether to use the Paddle Inference TensorRT subgraph engine. If the model does not support TensorRT acceleration, even if this flag is set, acceleration will not be used.",
|
|
)
|
|
parser.add_argument(
|
|
"--precision",
|
|
type=str,
|
|
default=DEFAULT_PRECISION,
|
|
choices=SUPPORTED_PRECISION_LIST,
|
|
help="Precision for TensorRT when using the Paddle Inference TensorRT subgraph engine.",
|
|
)
|
|
parser.add_argument(
|
|
"--enable_mkldnn",
|
|
type=str2bool,
|
|
default=DEFAULT_ENABLE_MKLDNN,
|
|
help="Enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set.",
|
|
)
|
|
parser.add_argument(
|
|
"--mkldnn_cache_capacity",
|
|
type=int,
|
|
default=DEFAULT_MKLDNN_CACHE_CAPACITY,
|
|
help="MKL-DNN cache capacity.",
|
|
)
|
|
parser.add_argument(
|
|
"--cpu_threads",
|
|
type=int,
|
|
default=DEFAULT_CPU_THREADS,
|
|
help="Number of threads to use for inference on CPUs.",
|
|
)
|