mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	* add sr model * update for eval * submit sr * polish code * polish code * polish code * update sr model * update doc * update doc * update doc * fix typo * format code * update metric * fix export
		
			
				
	
	
		
			177 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
from paddle.io import Dataset
 | 
						|
import lmdb
 | 
						|
import cv2
 | 
						|
import string
 | 
						|
import six
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from .imaug import transform, create_operators
 | 
						|
 | 
						|
 | 
						|
class LMDBDataSet(Dataset):
 | 
						|
    def __init__(self, config, mode, logger, seed=None):
 | 
						|
        super(LMDBDataSet, self).__init__()
 | 
						|
 | 
						|
        global_config = config['Global']
 | 
						|
        dataset_config = config[mode]['dataset']
 | 
						|
        loader_config = config[mode]['loader']
 | 
						|
        batch_size = loader_config['batch_size_per_card']
 | 
						|
        data_dir = dataset_config['data_dir']
 | 
						|
        self.do_shuffle = loader_config['shuffle']
 | 
						|
 | 
						|
        self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
 | 
						|
        logger.info("Initialize indexs of datasets:%s" % data_dir)
 | 
						|
        self.data_idx_order_list = self.dataset_traversal()
 | 
						|
        if self.do_shuffle:
 | 
						|
            np.random.shuffle(self.data_idx_order_list)
 | 
						|
        self.ops = create_operators(dataset_config['transforms'], global_config)
 | 
						|
 | 
						|
        ratio_list = dataset_config.get("ratio_list", [1.0])
 | 
						|
        self.need_reset = True in [x < 1 for x in ratio_list]
 | 
						|
 | 
						|
    def load_hierarchical_lmdb_dataset(self, data_dir):
 | 
						|
        lmdb_sets = {}
 | 
						|
        dataset_idx = 0
 | 
						|
        for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
 | 
						|
            if not dirnames:
 | 
						|
                env = lmdb.open(
 | 
						|
                    dirpath,
 | 
						|
                    max_readers=32,
 | 
						|
                    readonly=True,
 | 
						|
                    lock=False,
 | 
						|
                    readahead=False,
 | 
						|
                    meminit=False)
 | 
						|
                txn = env.begin(write=False)
 | 
						|
                num_samples = int(txn.get('num-samples'.encode()))
 | 
						|
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
 | 
						|
                    "txn":txn, "num_samples":num_samples}
 | 
						|
                dataset_idx += 1
 | 
						|
        return lmdb_sets
 | 
						|
 | 
						|
    def dataset_traversal(self):
 | 
						|
        lmdb_num = len(self.lmdb_sets)
 | 
						|
        total_sample_num = 0
 | 
						|
        for lno in range(lmdb_num):
 | 
						|
            total_sample_num += self.lmdb_sets[lno]['num_samples']
 | 
						|
        data_idx_order_list = np.zeros((total_sample_num, 2))
 | 
						|
        beg_idx = 0
 | 
						|
        for lno in range(lmdb_num):
 | 
						|
            tmp_sample_num = self.lmdb_sets[lno]['num_samples']
 | 
						|
            end_idx = beg_idx + tmp_sample_num
 | 
						|
            data_idx_order_list[beg_idx:end_idx, 0] = lno
 | 
						|
            data_idx_order_list[beg_idx:end_idx, 1] \
 | 
						|
                = list(range(tmp_sample_num))
 | 
						|
            data_idx_order_list[beg_idx:end_idx, 1] += 1
 | 
						|
            beg_idx = beg_idx + tmp_sample_num
 | 
						|
        return data_idx_order_list
 | 
						|
 | 
						|
    def get_img_data(self, value):
 | 
						|
        """get_img_data"""
 | 
						|
        if not value:
 | 
						|
            return None
 | 
						|
        imgdata = np.frombuffer(value, dtype='uint8')
 | 
						|
        if imgdata is None:
 | 
						|
            return None
 | 
						|
        imgori = cv2.imdecode(imgdata, 1)
 | 
						|
        if imgori is None:
 | 
						|
            return None
 | 
						|
        return imgori
 | 
						|
 | 
						|
    def get_lmdb_sample_info(self, txn, index):
 | 
						|
        label_key = 'label-%09d'.encode() % index
 | 
						|
        label = txn.get(label_key)
 | 
						|
        if label is None:
 | 
						|
            return None
 | 
						|
        label = label.decode('utf-8')
 | 
						|
        img_key = 'image-%09d'.encode() % index
 | 
						|
        imgbuf = txn.get(img_key)
 | 
						|
        return imgbuf, label
 | 
						|
 | 
						|
    def __getitem__(self, idx):
 | 
						|
        lmdb_idx, file_idx = self.data_idx_order_list[idx]
 | 
						|
        lmdb_idx = int(lmdb_idx)
 | 
						|
        file_idx = int(file_idx)
 | 
						|
        sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
 | 
						|
                                                file_idx)
 | 
						|
        if sample_info is None:
 | 
						|
            return self.__getitem__(np.random.randint(self.__len__()))
 | 
						|
        img, label = sample_info
 | 
						|
        data = {'image': img, 'label': label}
 | 
						|
        outs = transform(data, self.ops)
 | 
						|
        if outs is None:
 | 
						|
            return self.__getitem__(np.random.randint(self.__len__()))
 | 
						|
        return outs
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        return self.data_idx_order_list.shape[0]
 | 
						|
 | 
						|
 | 
						|
class LMDBDataSetSR(LMDBDataSet):
 | 
						|
    def buf2PIL(self, txn, key, type='RGB'):
 | 
						|
        imgbuf = txn.get(key)
 | 
						|
        buf = six.BytesIO()
 | 
						|
        buf.write(imgbuf)
 | 
						|
        buf.seek(0)
 | 
						|
        im = Image.open(buf).convert(type)
 | 
						|
        return im
 | 
						|
 | 
						|
    def str_filt(self, str_, voc_type):
 | 
						|
        alpha_dict = {
 | 
						|
            'digit': string.digits,
 | 
						|
            'lower': string.digits + string.ascii_lowercase,
 | 
						|
            'upper': string.digits + string.ascii_letters,
 | 
						|
            'all': string.digits + string.ascii_letters + string.punctuation
 | 
						|
        }
 | 
						|
        if voc_type == 'lower':
 | 
						|
            str_ = str_.lower()
 | 
						|
        for char in str_:
 | 
						|
            if char not in alpha_dict[voc_type]:
 | 
						|
                str_ = str_.replace(char, '')
 | 
						|
        return str_
 | 
						|
 | 
						|
    def get_lmdb_sample_info(self, txn, index):
 | 
						|
        self.voc_type = 'upper'
 | 
						|
        self.max_len = 100
 | 
						|
        self.test = False
 | 
						|
        label_key = b'label-%09d' % index
 | 
						|
        word = str(txn.get(label_key).decode())
 | 
						|
        img_HR_key = b'image_hr-%09d' % index  # 128*32
 | 
						|
        img_lr_key = b'image_lr-%09d' % index  # 64*16
 | 
						|
        try:
 | 
						|
            img_HR = self.buf2PIL(txn, img_HR_key, 'RGB')
 | 
						|
            img_lr = self.buf2PIL(txn, img_lr_key, 'RGB')
 | 
						|
        except IOError or len(word) > self.max_len:
 | 
						|
            return self[index + 1]
 | 
						|
        label_str = self.str_filt(word, self.voc_type)
 | 
						|
        return img_HR, img_lr, label_str
 | 
						|
 | 
						|
    def __getitem__(self, idx):
 | 
						|
        lmdb_idx, file_idx = self.data_idx_order_list[idx]
 | 
						|
        lmdb_idx = int(lmdb_idx)
 | 
						|
        file_idx = int(file_idx)
 | 
						|
        sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
 | 
						|
                                                file_idx)
 | 
						|
        if sample_info is None:
 | 
						|
            return self.__getitem__(np.random.randint(self.__len__()))
 | 
						|
        img_HR, img_lr, label_str = sample_info
 | 
						|
        data = {'image_hr': img_HR, 'image_lr': img_lr, 'label': label_str}
 | 
						|
        outs = transform(data, self.ops)
 | 
						|
        if outs is None:
 | 
						|
            return self.__getitem__(np.random.randint(self.__len__()))
 | 
						|
        return outs
 |