mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			192 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import paddle
 | 
						|
from paddle import nn
 | 
						|
 | 
						|
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
 | 
						|
from ppocr.modeling.backbones.rec_svtrnet import Block, ConvBNLayer, trunc_normal_, zeros_, ones_
 | 
						|
 | 
						|
 | 
						|
class Im2Seq(nn.Layer):
 | 
						|
    def __init__(self, in_channels, **kwargs):
 | 
						|
        super().__init__()
 | 
						|
        self.out_channels = in_channels
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        B, C, H, W = x.shape
 | 
						|
        assert H == 1
 | 
						|
        x = x.squeeze(axis=2)
 | 
						|
        x = x.transpose([0, 2, 1])  # (NTC)(batch, width, channels)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EncoderWithRNN(nn.Layer):
 | 
						|
    def __init__(self, in_channels, hidden_size):
 | 
						|
        super(EncoderWithRNN, self).__init__()
 | 
						|
        self.out_channels = hidden_size * 2
 | 
						|
        self.lstm = nn.LSTM(
 | 
						|
            in_channels, hidden_size, direction='bidirectional', num_layers=2)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x, _ = self.lstm(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EncoderWithFC(nn.Layer):
 | 
						|
    def __init__(self, in_channels, hidden_size):
 | 
						|
        super(EncoderWithFC, self).__init__()
 | 
						|
        self.out_channels = hidden_size
 | 
						|
        weight_attr, bias_attr = get_para_bias_attr(
 | 
						|
            l2_decay=0.00001, k=in_channels)
 | 
						|
        self.fc = nn.Linear(
 | 
						|
            in_channels,
 | 
						|
            hidden_size,
 | 
						|
            weight_attr=weight_attr,
 | 
						|
            bias_attr=bias_attr,
 | 
						|
            name='reduce_encoder_fea')
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.fc(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EncoderWithSVTR(nn.Layer):
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            in_channels,
 | 
						|
            dims=64,  # XS
 | 
						|
            depth=2,
 | 
						|
            hidden_dims=120,
 | 
						|
            use_guide=False,
 | 
						|
            num_heads=8,
 | 
						|
            qkv_bias=True,
 | 
						|
            mlp_ratio=2.0,
 | 
						|
            drop_rate=0.1,
 | 
						|
            attn_drop_rate=0.1,
 | 
						|
            drop_path=0.,
 | 
						|
            qk_scale=None):
 | 
						|
        super(EncoderWithSVTR, self).__init__()
 | 
						|
        self.depth = depth
 | 
						|
        self.use_guide = use_guide
 | 
						|
        self.conv1 = ConvBNLayer(
 | 
						|
            in_channels, in_channels // 8, padding=1, act=nn.Swish)
 | 
						|
        self.conv2 = ConvBNLayer(
 | 
						|
            in_channels // 8, hidden_dims, kernel_size=1, act=nn.Swish)
 | 
						|
 | 
						|
        self.svtr_block = nn.LayerList([
 | 
						|
            Block(
 | 
						|
                dim=hidden_dims,
 | 
						|
                num_heads=num_heads,
 | 
						|
                mixer='Global',
 | 
						|
                HW=None,
 | 
						|
                mlp_ratio=mlp_ratio,
 | 
						|
                qkv_bias=qkv_bias,
 | 
						|
                qk_scale=qk_scale,
 | 
						|
                drop=drop_rate,
 | 
						|
                act_layer=nn.Swish,
 | 
						|
                attn_drop=attn_drop_rate,
 | 
						|
                drop_path=drop_path,
 | 
						|
                norm_layer='nn.LayerNorm',
 | 
						|
                epsilon=1e-05,
 | 
						|
                prenorm=False) for i in range(depth)
 | 
						|
        ])
 | 
						|
        self.norm = nn.LayerNorm(hidden_dims, epsilon=1e-6)
 | 
						|
        self.conv3 = ConvBNLayer(
 | 
						|
            hidden_dims, in_channels, kernel_size=1, act=nn.Swish)
 | 
						|
        # last conv-nxn, the input is concat of input tensor and conv3 output tensor
 | 
						|
        self.conv4 = ConvBNLayer(
 | 
						|
            2 * in_channels, in_channels // 8, padding=1, act=nn.Swish)
 | 
						|
 | 
						|
        self.conv1x1 = ConvBNLayer(
 | 
						|
            in_channels // 8, dims, kernel_size=1, act=nn.Swish)
 | 
						|
        self.out_channels = dims
 | 
						|
        self.apply(self._init_weights)
 | 
						|
 | 
						|
    def _init_weights(self, m):
 | 
						|
        if isinstance(m, nn.Linear):
 | 
						|
            trunc_normal_(m.weight)
 | 
						|
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
						|
                zeros_(m.bias)
 | 
						|
        elif isinstance(m, nn.LayerNorm):
 | 
						|
            zeros_(m.bias)
 | 
						|
            ones_(m.weight)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        # for use guide
 | 
						|
        if self.use_guide:
 | 
						|
            z = x.clone()
 | 
						|
            z.stop_gradient = True
 | 
						|
        else:
 | 
						|
            z = x
 | 
						|
        # for short cut
 | 
						|
        h = z
 | 
						|
        # reduce dim
 | 
						|
        z = self.conv1(z)
 | 
						|
        z = self.conv2(z)
 | 
						|
        # SVTR global block
 | 
						|
        B, C, H, W = z.shape
 | 
						|
        z = z.flatten(2).transpose([0, 2, 1])
 | 
						|
        for blk in self.svtr_block:
 | 
						|
            z = blk(z)
 | 
						|
        z = self.norm(z)
 | 
						|
        # last stage
 | 
						|
        z = z.reshape([0, H, W, C]).transpose([0, 3, 1, 2])
 | 
						|
        z = self.conv3(z)
 | 
						|
        z = paddle.concat((h, z), axis=1)
 | 
						|
        z = self.conv1x1(self.conv4(z))
 | 
						|
        return z
 | 
						|
 | 
						|
 | 
						|
class SequenceEncoder(nn.Layer):
 | 
						|
    def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
 | 
						|
        super(SequenceEncoder, self).__init__()
 | 
						|
        self.encoder_reshape = Im2Seq(in_channels)
 | 
						|
        self.out_channels = self.encoder_reshape.out_channels
 | 
						|
        self.encoder_type = encoder_type
 | 
						|
        if encoder_type == 'reshape':
 | 
						|
            self.only_reshape = True
 | 
						|
        else:
 | 
						|
            support_encoder_dict = {
 | 
						|
                'reshape': Im2Seq,
 | 
						|
                'fc': EncoderWithFC,
 | 
						|
                'rnn': EncoderWithRNN,
 | 
						|
                'svtr': EncoderWithSVTR
 | 
						|
            }
 | 
						|
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
 | 
						|
                encoder_type, support_encoder_dict.keys())
 | 
						|
            if encoder_type == "svtr":
 | 
						|
                self.encoder = support_encoder_dict[encoder_type](
 | 
						|
                    self.encoder_reshape.out_channels, **kwargs)
 | 
						|
            else:
 | 
						|
                self.encoder = support_encoder_dict[encoder_type](
 | 
						|
                    self.encoder_reshape.out_channels, hidden_size)
 | 
						|
            self.out_channels = self.encoder.out_channels
 | 
						|
            self.only_reshape = False
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        if self.encoder_type != 'svtr':
 | 
						|
            x = self.encoder_reshape(x)
 | 
						|
            if not self.only_reshape:
 | 
						|
                x = self.encoder(x)
 | 
						|
            return x
 | 
						|
        else:
 | 
						|
            x = self.encoder(x)
 | 
						|
            x = self.encoder_reshape(x)
 | 
						|
            return x
 |