mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			379 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Bash
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Bash
		
	
	
	
	
	
#!/bin/bash
 | 
						|
source test_tipc/common_func.sh
 | 
						|
 | 
						|
FILENAME=$1
 | 
						|
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
 | 
						|
MODE=$2
 | 
						|
 | 
						|
dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
 | 
						|
 | 
						|
# parser params
 | 
						|
IFS=$'\n'
 | 
						|
lines=(${dataline})
 | 
						|
 | 
						|
# The training params
 | 
						|
model_name=$(func_parser_value "${lines[1]}")
 | 
						|
python=$(func_parser_value "${lines[2]}")
 | 
						|
gpu_list=$(func_parser_value "${lines[3]}")
 | 
						|
train_use_gpu_key=$(func_parser_key "${lines[4]}")
 | 
						|
train_use_gpu_value=$(func_parser_value "${lines[4]}")
 | 
						|
autocast_list=$(func_parser_value "${lines[5]}")
 | 
						|
autocast_key=$(func_parser_key "${lines[5]}")
 | 
						|
epoch_key=$(func_parser_key "${lines[6]}")
 | 
						|
epoch_num=$(func_parser_params "${lines[6]}" "${MODE}")
 | 
						|
save_model_key=$(func_parser_key "${lines[7]}")
 | 
						|
train_batch_key=$(func_parser_key "${lines[8]}")
 | 
						|
train_batch_value=$(func_parser_params "${lines[8]}" "${MODE}")
 | 
						|
pretrain_model_key=$(func_parser_key "${lines[9]}")
 | 
						|
pretrain_model_value=$(func_parser_value "${lines[9]}")
 | 
						|
train_model_name=$(func_parser_value "${lines[10]}")
 | 
						|
train_infer_img_dir=$(func_parser_value "${lines[11]}")
 | 
						|
train_param_key1=$(func_parser_key "${lines[12]}")
 | 
						|
train_param_value1=$(func_parser_value "${lines[12]}")
 | 
						|
 | 
						|
trainer_list=$(func_parser_value "${lines[14]}")
 | 
						|
trainer_norm=$(func_parser_key "${lines[15]}")
 | 
						|
norm_trainer=$(func_parser_value "${lines[15]}")
 | 
						|
pact_key=$(func_parser_key "${lines[16]}")
 | 
						|
pact_trainer=$(func_parser_value "${lines[16]}")
 | 
						|
fpgm_key=$(func_parser_key "${lines[17]}")
 | 
						|
fpgm_trainer=$(func_parser_value "${lines[17]}")
 | 
						|
distill_key=$(func_parser_key "${lines[18]}")
 | 
						|
distill_trainer=$(func_parser_value "${lines[18]}")
 | 
						|
trainer_key1=$(func_parser_key "${lines[19]}")
 | 
						|
trainer_value1=$(func_parser_value "${lines[19]}")
 | 
						|
trainer_key2=$(func_parser_key "${lines[20]}")
 | 
						|
trainer_value2=$(func_parser_value "${lines[20]}")
 | 
						|
 | 
						|
eval_py=$(func_parser_value "${lines[23]}")
 | 
						|
eval_key1=$(func_parser_key "${lines[24]}")
 | 
						|
eval_value1=$(func_parser_value "${lines[24]}")
 | 
						|
 | 
						|
save_infer_key=$(func_parser_key "${lines[27]}")
 | 
						|
export_weight=$(func_parser_key "${lines[28]}")
 | 
						|
norm_export=$(func_parser_value "${lines[29]}")
 | 
						|
pact_export=$(func_parser_value "${lines[30]}")
 | 
						|
fpgm_export=$(func_parser_value "${lines[31]}")
 | 
						|
distill_export=$(func_parser_value "${lines[32]}")
 | 
						|
export_key1=$(func_parser_key "${lines[33]}")
 | 
						|
export_value1=$(func_parser_value "${lines[33]}")
 | 
						|
export_key2=$(func_parser_key "${lines[34]}")
 | 
						|
export_value2=$(func_parser_value "${lines[34]}")
 | 
						|
inference_dir=$(func_parser_value "${lines[35]}")
 | 
						|
 | 
						|
# parser inference model 
 | 
						|
infer_model_dir_list=$(func_parser_value "${lines[36]}")
 | 
						|
infer_export_list=$(func_parser_value "${lines[37]}")
 | 
						|
infer_is_quant=$(func_parser_value "${lines[38]}")
 | 
						|
# parser inference 
 | 
						|
inference_py=$(func_parser_value "${lines[39]}")
 | 
						|
use_gpu_key=$(func_parser_key "${lines[40]}")
 | 
						|
use_gpu_list=$(func_parser_value "${lines[40]}")
 | 
						|
use_mkldnn_key=$(func_parser_key "${lines[41]}")
 | 
						|
use_mkldnn_list=$(func_parser_value "${lines[41]}")
 | 
						|
cpu_threads_key=$(func_parser_key "${lines[42]}")
 | 
						|
cpu_threads_list=$(func_parser_value "${lines[42]}")
 | 
						|
batch_size_key=$(func_parser_key "${lines[43]}")
 | 
						|
batch_size_list=$(func_parser_value "${lines[43]}")
 | 
						|
use_trt_key=$(func_parser_key "${lines[44]}")
 | 
						|
use_trt_list=$(func_parser_value "${lines[44]}")
 | 
						|
precision_key=$(func_parser_key "${lines[45]}")
 | 
						|
precision_list=$(func_parser_value "${lines[45]}")
 | 
						|
infer_model_key=$(func_parser_key "${lines[46]}")
 | 
						|
image_dir_key=$(func_parser_key "${lines[47]}")
 | 
						|
infer_img_dir=$(func_parser_value "${lines[47]}")
 | 
						|
save_log_key=$(func_parser_key "${lines[48]}")
 | 
						|
benchmark_key=$(func_parser_key "${lines[49]}")
 | 
						|
benchmark_value=$(func_parser_value "${lines[49]}")
 | 
						|
infer_key1=$(func_parser_key "${lines[50]}")
 | 
						|
infer_value1=$(func_parser_value "${lines[50]}")
 | 
						|
 | 
						|
# parser klquant_infer
 | 
						|
if [ ${MODE} = "klquant_whole_infer" ]; then
 | 
						|
    dataline=$(awk 'NR==1, NR==17{print}'  $FILENAME)
 | 
						|
    lines=(${dataline})
 | 
						|
    model_name=$(func_parser_value "${lines[1]}")
 | 
						|
    python=$(func_parser_value "${lines[2]}")
 | 
						|
    export_weight=$(func_parser_key "${lines[3]}")
 | 
						|
    save_infer_key=$(func_parser_key "${lines[4]}")
 | 
						|
    # parser inference model 
 | 
						|
    infer_model_dir_list=$(func_parser_value "${lines[5]}")
 | 
						|
    infer_export_list=$(func_parser_value "${lines[6]}")
 | 
						|
    infer_is_quant=$(func_parser_value "${lines[7]}")
 | 
						|
    # parser inference 
 | 
						|
    inference_py=$(func_parser_value "${lines[8]}")
 | 
						|
    use_gpu_key=$(func_parser_key "${lines[9]}")
 | 
						|
    use_gpu_list=$(func_parser_value "${lines[9]}")
 | 
						|
    use_mkldnn_key=$(func_parser_key "${lines[10]}")
 | 
						|
    use_mkldnn_list=$(func_parser_value "${lines[10]}")
 | 
						|
    cpu_threads_key=$(func_parser_key "${lines[11]}")
 | 
						|
    cpu_threads_list=$(func_parser_value "${lines[11]}")
 | 
						|
    batch_size_key=$(func_parser_key "${lines[12]}")
 | 
						|
    batch_size_list=$(func_parser_value "${lines[12]}")
 | 
						|
    use_trt_key=$(func_parser_key "${lines[13]}")
 | 
						|
    use_trt_list=$(func_parser_value "${lines[13]}")
 | 
						|
    precision_key=$(func_parser_key "${lines[14]}")
 | 
						|
    precision_list=$(func_parser_value "${lines[14]}")
 | 
						|
    infer_model_key=$(func_parser_key "${lines[15]}")
 | 
						|
    image_dir_key=$(func_parser_key "${lines[16]}")
 | 
						|
    infer_img_dir=$(func_parser_value "${lines[16]}")
 | 
						|
    save_log_key=$(func_parser_key "${lines[17]}")
 | 
						|
    save_log_value=$(func_parser_value "${lines[17]}")
 | 
						|
    benchmark_key=$(func_parser_key "${lines[18]}")
 | 
						|
    benchmark_value=$(func_parser_value "${lines[18]}")
 | 
						|
    infer_key1=$(func_parser_key "${lines[19]}")
 | 
						|
    infer_value1=$(func_parser_value "${lines[19]}")
 | 
						|
fi
 | 
						|
 | 
						|
LOG_PATH="./test_tipc/output/${model_name}"
 | 
						|
mkdir -p ${LOG_PATH}
 | 
						|
status_log="${LOG_PATH}/results_python.log"
 | 
						|
 | 
						|
 | 
						|
function func_inference(){
 | 
						|
    IFS='|'
 | 
						|
    _python=$1
 | 
						|
    _script=$2
 | 
						|
    _model_dir=$3
 | 
						|
    _log_path=$4
 | 
						|
    _img_dir=$5
 | 
						|
    _flag_quant=$6
 | 
						|
    # inference 
 | 
						|
    for use_gpu in ${use_gpu_list[*]}; do
 | 
						|
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
 | 
						|
            for use_mkldnn in ${use_mkldnn_list[*]}; do
 | 
						|
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
 | 
						|
                    continue
 | 
						|
                fi
 | 
						|
                for threads in ${cpu_threads_list[*]}; do
 | 
						|
                    for batch_size in ${batch_size_list[*]}; do
 | 
						|
                        for precision in ${precision_list[*]}; do
 | 
						|
                            if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
 | 
						|
                                continue
 | 
						|
                            fi # skip when enable fp16 but disable mkldnn
 | 
						|
                            if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
 | 
						|
                                continue
 | 
						|
                            fi # skip when quant model inference but precision is not int8
 | 
						|
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
 | 
						|
                            
 | 
						|
                            _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
 | 
						|
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
 | 
						|
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
 | 
						|
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
 | 
						|
                            set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
 | 
						|
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
 | 
						|
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
 | 
						|
                            set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
 | 
						|
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
 | 
						|
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
 | 
						|
                            eval $command
 | 
						|
                            last_status=${PIPESTATUS[0]}
 | 
						|
                            eval "cat ${_save_log_path}"
 | 
						|
                            status_check $last_status "${command}" "${status_log}"
 | 
						|
                        done
 | 
						|
                    done
 | 
						|
                done
 | 
						|
            done
 | 
						|
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
 | 
						|
            for use_trt in ${use_trt_list[*]}; do
 | 
						|
                for precision in ${precision_list[*]}; do
 | 
						|
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
 | 
						|
                        continue
 | 
						|
                    fi 
 | 
						|
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
 | 
						|
                        continue
 | 
						|
                    fi
 | 
						|
                    if [[ ${use_trt} = "False" && ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
 | 
						|
                        continue
 | 
						|
                    fi
 | 
						|
                    for batch_size in ${batch_size_list[*]}; do
 | 
						|
                        _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
 | 
						|
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
 | 
						|
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
 | 
						|
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
 | 
						|
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
 | 
						|
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
 | 
						|
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
 | 
						|
                        set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
 | 
						|
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
 | 
						|
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
 | 
						|
                        eval $command
 | 
						|
                        last_status=${PIPESTATUS[0]}
 | 
						|
                        eval "cat ${_save_log_path}"
 | 
						|
                        status_check $last_status "${command}" "${status_log}"
 | 
						|
                        
 | 
						|
                    done
 | 
						|
                done
 | 
						|
            done
 | 
						|
        else
 | 
						|
            echo "Does not support hardware other than CPU and GPU Currently!"
 | 
						|
        fi
 | 
						|
    done
 | 
						|
}
 | 
						|
 | 
						|
if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
 | 
						|
    GPUID=$3
 | 
						|
    if [ ${#GPUID} -le 0 ];then
 | 
						|
        env=" "
 | 
						|
    else
 | 
						|
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
 | 
						|
    fi
 | 
						|
    # set CUDA_VISIBLE_DEVICES
 | 
						|
    eval $env
 | 
						|
    export Count=0
 | 
						|
    IFS="|"
 | 
						|
    infer_run_exports=(${infer_export_list})
 | 
						|
    infer_quant_flag=(${infer_is_quant})
 | 
						|
    for infer_model in ${infer_model_dir_list[*]}; do
 | 
						|
        # run export
 | 
						|
        if [ ${infer_run_exports[Count]} != "null" ];then
 | 
						|
            if [ ${MODE} = "klquant_whole_infer" ]; then
 | 
						|
                save_infer_dir="${infer_model}_klquant"
 | 
						|
            fi
 | 
						|
            if [ ${MODE} = "whole_infer" ]; then
 | 
						|
                save_infer_dir="${infer_model}"
 | 
						|
            fi
 | 
						|
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
 | 
						|
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
 | 
						|
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
 | 
						|
            echo ${infer_run_exports[Count]} 
 | 
						|
            echo $export_cmd
 | 
						|
            eval $export_cmd
 | 
						|
            status_export=$?
 | 
						|
            status_check $status_export "${export_cmd}" "${status_log}"
 | 
						|
        else
 | 
						|
            save_infer_dir=${infer_model}
 | 
						|
        fi
 | 
						|
        #run inference
 | 
						|
        is_quant=${infer_quant_flag[Count]}
 | 
						|
        if [ ${MODE} = "klquant_whole_infer" ]; then
 | 
						|
            is_quant="True"
 | 
						|
        fi
 | 
						|
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
 | 
						|
        Count=$(($Count + 1))
 | 
						|
    done
 | 
						|
else
 | 
						|
    IFS="|"
 | 
						|
    export Count=0
 | 
						|
    USE_GPU_KEY=(${train_use_gpu_value})
 | 
						|
    for gpu in ${gpu_list[*]}; do
 | 
						|
        train_use_gpu=${USE_GPU_KEY[Count]}
 | 
						|
        Count=$(($Count + 1))
 | 
						|
        ips=""
 | 
						|
        if [ ${gpu} = "-1" ];then
 | 
						|
            env=""
 | 
						|
        elif [ ${#gpu} -le 1 ];then
 | 
						|
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
 | 
						|
        elif [ ${#gpu} -le 15 ];then
 | 
						|
            IFS=","
 | 
						|
            array=(${gpu})
 | 
						|
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
 | 
						|
            IFS="|"
 | 
						|
        else
 | 
						|
            IFS=";"
 | 
						|
            array=(${gpu})
 | 
						|
            ips=${array[0]}
 | 
						|
            gpu=${array[1]}
 | 
						|
            IFS="|"
 | 
						|
            env=" "
 | 
						|
        fi
 | 
						|
        for autocast in ${autocast_list[*]}; do 
 | 
						|
            if [ ${autocast} = "amp" ]; then
 | 
						|
                set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
 | 
						|
            else
 | 
						|
                set_amp_config=" "
 | 
						|
            fi          
 | 
						|
            for trainer in ${trainer_list[*]}; do 
 | 
						|
                flag_quant=False
 | 
						|
                if [ ${trainer} = ${pact_key} ]; then
 | 
						|
                    run_train=${pact_trainer}
 | 
						|
                    run_export=${pact_export}
 | 
						|
                    flag_quant=True
 | 
						|
                elif [ ${trainer} = "${fpgm_key}" ]; then
 | 
						|
                    run_train=${fpgm_trainer}
 | 
						|
                    run_export=${fpgm_export}
 | 
						|
                elif [ ${trainer} = "${distill_key}" ]; then
 | 
						|
                    run_train=${distill_trainer}
 | 
						|
                    run_export=${distill_export}
 | 
						|
                elif [ ${trainer} = ${trainer_key1} ]; then
 | 
						|
                    run_train=${trainer_value1}
 | 
						|
                    run_export=${export_value1}
 | 
						|
                elif [[ ${trainer} = ${trainer_key2} ]]; then
 | 
						|
                    run_train=${trainer_value2}
 | 
						|
                    run_export=${export_value2}
 | 
						|
                else
 | 
						|
                    run_train=${norm_trainer}
 | 
						|
                    run_export=${norm_export}
 | 
						|
                fi
 | 
						|
 | 
						|
                if [ ${run_train} = "null" ]; then
 | 
						|
                    continue
 | 
						|
                fi
 | 
						|
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
 | 
						|
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
 | 
						|
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
 | 
						|
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
 | 
						|
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
 | 
						|
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
 | 
						|
                if [ ${#ips} -le 26 ];then
 | 
						|
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
 | 
						|
                    nodes=1
 | 
						|
                else
 | 
						|
                    IFS=","
 | 
						|
                    ips_array=(${ips})
 | 
						|
                    IFS="|"
 | 
						|
                    nodes=${#ips_array[@]}
 | 
						|
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
 | 
						|
                fi
 | 
						|
 | 
						|
 | 
						|
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
 | 
						|
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
 | 
						|
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
 | 
						|
                elif [ ${#ips} -le 26 ];then  # train with multi-gpu
 | 
						|
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
 | 
						|
                else     # train with multi-machine
 | 
						|
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
 | 
						|
                fi
 | 
						|
                # run train
 | 
						|
                eval $cmd
 | 
						|
                status_check $? "${cmd}" "${status_log}"
 | 
						|
 | 
						|
                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
 | 
						|
 | 
						|
                # run eval 
 | 
						|
                if [ ${eval_py} != "null" ]; then
 | 
						|
                    eval ${env}
 | 
						|
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
 | 
						|
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
 | 
						|
                    eval $eval_cmd
 | 
						|
                    status_check $? "${eval_cmd}" "${status_log}"
 | 
						|
                fi
 | 
						|
                # run export model
 | 
						|
                if [ ${run_export} != "null" ]; then 
 | 
						|
                    # run export model
 | 
						|
                    save_infer_path="${save_log}"
 | 
						|
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
 | 
						|
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
 | 
						|
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
 | 
						|
                    eval $export_cmd
 | 
						|
                    status_check $? "${export_cmd}" "${status_log}"
 | 
						|
 | 
						|
                    #run inference
 | 
						|
                    eval $env
 | 
						|
                    save_infer_path="${save_log}"
 | 
						|
                    if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
 | 
						|
                        infer_model_dir="${save_infer_path}/${inference_dir}"
 | 
						|
                    else
 | 
						|
                        infer_model_dir=${save_infer_path}
 | 
						|
                    fi
 | 
						|
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
 | 
						|
                    
 | 
						|
                    eval "unset CUDA_VISIBLE_DEVICES"
 | 
						|
                fi
 | 
						|
            done  # done with:    for trainer in ${trainer_list[*]}; do 
 | 
						|
        done      # done with:    for autocast in ${autocast_list[*]}; do 
 | 
						|
    done          # done with:    for gpu in ${gpu_list[*]}; do
 | 
						|
fi  # end if [ ${MODE} = "infer" ]; then
 | 
						|
 |