mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import paddle
 | 
						|
from paddle import ParamAttr
 | 
						|
import paddle.nn as nn
 | 
						|
import paddle.nn.functional as F
 | 
						|
 | 
						|
__all__ = ["ResNet_SAST"]
 | 
						|
 | 
						|
 | 
						|
class ConvBNLayer(nn.Layer):
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            in_channels,
 | 
						|
            out_channels,
 | 
						|
            kernel_size,
 | 
						|
            stride=1,
 | 
						|
            groups=1,
 | 
						|
            is_vd_mode=False,
 | 
						|
            act=None,
 | 
						|
            name=None, ):
 | 
						|
        super(ConvBNLayer, self).__init__()
 | 
						|
 | 
						|
        self.is_vd_mode = is_vd_mode
 | 
						|
        self._pool2d_avg = nn.AvgPool2D(
 | 
						|
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
 | 
						|
        self._conv = nn.Conv2D(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=kernel_size,
 | 
						|
            stride=stride,
 | 
						|
            padding=(kernel_size - 1) // 2,
 | 
						|
            groups=groups,
 | 
						|
            weight_attr=ParamAttr(name=name + "_weights"),
 | 
						|
            bias_attr=False)
 | 
						|
        if name == "conv1":
 | 
						|
            bn_name = "bn_" + name
 | 
						|
        else:
 | 
						|
            bn_name = "bn" + name[3:]
 | 
						|
        self._batch_norm = nn.BatchNorm(
 | 
						|
            out_channels,
 | 
						|
            act=act,
 | 
						|
            param_attr=ParamAttr(name=bn_name + '_scale'),
 | 
						|
            bias_attr=ParamAttr(bn_name + '_offset'),
 | 
						|
            moving_mean_name=bn_name + '_mean',
 | 
						|
            moving_variance_name=bn_name + '_variance')
 | 
						|
 | 
						|
    def forward(self, inputs):
 | 
						|
        if self.is_vd_mode:
 | 
						|
            inputs = self._pool2d_avg(inputs)
 | 
						|
        y = self._conv(inputs)
 | 
						|
        y = self._batch_norm(y)
 | 
						|
        return y
 | 
						|
 | 
						|
 | 
						|
class BottleneckBlock(nn.Layer):
 | 
						|
    def __init__(self,
 | 
						|
                 in_channels,
 | 
						|
                 out_channels,
 | 
						|
                 stride,
 | 
						|
                 shortcut=True,
 | 
						|
                 if_first=False,
 | 
						|
                 name=None):
 | 
						|
        super(BottleneckBlock, self).__init__()
 | 
						|
 | 
						|
        self.conv0 = ConvBNLayer(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=1,
 | 
						|
            act='relu',
 | 
						|
            name=name + "_branch2a")
 | 
						|
        self.conv1 = ConvBNLayer(
 | 
						|
            in_channels=out_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=stride,
 | 
						|
            act='relu',
 | 
						|
            name=name + "_branch2b")
 | 
						|
        self.conv2 = ConvBNLayer(
 | 
						|
            in_channels=out_channels,
 | 
						|
            out_channels=out_channels * 4,
 | 
						|
            kernel_size=1,
 | 
						|
            act=None,
 | 
						|
            name=name + "_branch2c")
 | 
						|
 | 
						|
        if not shortcut:
 | 
						|
            self.short = ConvBNLayer(
 | 
						|
                in_channels=in_channels,
 | 
						|
                out_channels=out_channels * 4,
 | 
						|
                kernel_size=1,
 | 
						|
                stride=1,
 | 
						|
                is_vd_mode=False if if_first else True,
 | 
						|
                name=name + "_branch1")
 | 
						|
 | 
						|
        self.shortcut = shortcut
 | 
						|
 | 
						|
    def forward(self, inputs):
 | 
						|
        y = self.conv0(inputs)
 | 
						|
        conv1 = self.conv1(y)
 | 
						|
        conv2 = self.conv2(conv1)
 | 
						|
 | 
						|
        if self.shortcut:
 | 
						|
            short = inputs
 | 
						|
        else:
 | 
						|
            short = self.short(inputs)
 | 
						|
        y = paddle.add(x=short, y=conv2)
 | 
						|
        y = F.relu(y)
 | 
						|
        return y
 | 
						|
 | 
						|
 | 
						|
class BasicBlock(nn.Layer):
 | 
						|
    def __init__(self,
 | 
						|
                 in_channels,
 | 
						|
                 out_channels,
 | 
						|
                 stride,
 | 
						|
                 shortcut=True,
 | 
						|
                 if_first=False,
 | 
						|
                 name=None):
 | 
						|
        super(BasicBlock, self).__init__()
 | 
						|
        self.stride = stride
 | 
						|
        self.conv0 = ConvBNLayer(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=stride,
 | 
						|
            act='relu',
 | 
						|
            name=name + "_branch2a")
 | 
						|
        self.conv1 = ConvBNLayer(
 | 
						|
            in_channels=out_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            act=None,
 | 
						|
            name=name + "_branch2b")
 | 
						|
 | 
						|
        if not shortcut:
 | 
						|
            self.short = ConvBNLayer(
 | 
						|
                in_channels=in_channels,
 | 
						|
                out_channels=out_channels,
 | 
						|
                kernel_size=1,
 | 
						|
                stride=1,
 | 
						|
                is_vd_mode=False if if_first else True,
 | 
						|
                name=name + "_branch1")
 | 
						|
 | 
						|
        self.shortcut = shortcut
 | 
						|
 | 
						|
    def forward(self, inputs):
 | 
						|
        y = self.conv0(inputs)
 | 
						|
        conv1 = self.conv1(y)
 | 
						|
 | 
						|
        if self.shortcut:
 | 
						|
            short = inputs
 | 
						|
        else:
 | 
						|
            short = self.short(inputs)
 | 
						|
        y = paddle.add(x=short, y=conv1)
 | 
						|
        y = F.relu(y)
 | 
						|
        return y
 | 
						|
 | 
						|
 | 
						|
class ResNet_SAST(nn.Layer):
 | 
						|
    def __init__(self, in_channels=3, layers=50, **kwargs):
 | 
						|
        super(ResNet_SAST, self).__init__()
 | 
						|
 | 
						|
        self.layers = layers
 | 
						|
        supported_layers = [18, 34, 50, 101, 152, 200]
 | 
						|
        assert layers in supported_layers, \
 | 
						|
            "supported layers are {} but input layer is {}".format(
 | 
						|
                supported_layers, layers)
 | 
						|
 | 
						|
        if layers == 18:
 | 
						|
            depth = [2, 2, 2, 2]
 | 
						|
        elif layers == 34 or layers == 50:
 | 
						|
            # depth = [3, 4, 6, 3]
 | 
						|
            depth = [3, 4, 6, 3, 3]
 | 
						|
        elif layers == 101:
 | 
						|
            depth = [3, 4, 23, 3]
 | 
						|
        elif layers == 152:
 | 
						|
            depth = [3, 8, 36, 3]
 | 
						|
        elif layers == 200:
 | 
						|
            depth = [3, 12, 48, 3]
 | 
						|
        # num_channels = [64, 256, 512,
 | 
						|
        #                 1024] if layers >= 50 else [64, 64, 128, 256]
 | 
						|
        # num_filters = [64, 128, 256, 512]
 | 
						|
        num_channels = [64, 256, 512,
 | 
						|
                        1024, 2048] if layers >= 50 else [64, 64, 128, 256]
 | 
						|
        num_filters = [64, 128, 256, 512, 512]
 | 
						|
 | 
						|
        self.conv1_1 = ConvBNLayer(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=32,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=2,
 | 
						|
            act='relu',
 | 
						|
            name="conv1_1")
 | 
						|
        self.conv1_2 = ConvBNLayer(
 | 
						|
            in_channels=32,
 | 
						|
            out_channels=32,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            act='relu',
 | 
						|
            name="conv1_2")
 | 
						|
        self.conv1_3 = ConvBNLayer(
 | 
						|
            in_channels=32,
 | 
						|
            out_channels=64,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            act='relu',
 | 
						|
            name="conv1_3")
 | 
						|
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
 | 
						|
 | 
						|
        self.stages = []
 | 
						|
        self.out_channels = [3, 64]
 | 
						|
        if layers >= 50:
 | 
						|
            for block in range(len(depth)):
 | 
						|
                block_list = []
 | 
						|
                shortcut = False
 | 
						|
                for i in range(depth[block]):
 | 
						|
                    if layers in [101, 152] and block == 2:
 | 
						|
                        if i == 0:
 | 
						|
                            conv_name = "res" + str(block + 2) + "a"
 | 
						|
                        else:
 | 
						|
                            conv_name = "res" + str(block + 2) + "b" + str(i)
 | 
						|
                    else:
 | 
						|
                        conv_name = "res" + str(block + 2) + chr(97 + i)
 | 
						|
                    bottleneck_block = self.add_sublayer(
 | 
						|
                        'bb_%d_%d' % (block, i),
 | 
						|
                        BottleneckBlock(
 | 
						|
                            in_channels=num_channels[block]
 | 
						|
                            if i == 0 else num_filters[block] * 4,
 | 
						|
                            out_channels=num_filters[block],
 | 
						|
                            stride=2 if i == 0 and block != 0 else 1,
 | 
						|
                            shortcut=shortcut,
 | 
						|
                            if_first=block == i == 0,
 | 
						|
                            name=conv_name))
 | 
						|
                    shortcut = True
 | 
						|
                    block_list.append(bottleneck_block)
 | 
						|
                self.out_channels.append(num_filters[block] * 4)
 | 
						|
                self.stages.append(nn.Sequential(*block_list))
 | 
						|
        else:
 | 
						|
            for block in range(len(depth)):
 | 
						|
                block_list = []
 | 
						|
                shortcut = False
 | 
						|
                for i in range(depth[block]):
 | 
						|
                    conv_name = "res" + str(block + 2) + chr(97 + i)
 | 
						|
                    basic_block = self.add_sublayer(
 | 
						|
                        'bb_%d_%d' % (block, i),
 | 
						|
                        BasicBlock(
 | 
						|
                            in_channels=num_channels[block]
 | 
						|
                            if i == 0 else num_filters[block],
 | 
						|
                            out_channels=num_filters[block],
 | 
						|
                            stride=2 if i == 0 and block != 0 else 1,
 | 
						|
                            shortcut=shortcut,
 | 
						|
                            if_first=block == i == 0,
 | 
						|
                            name=conv_name))
 | 
						|
                    shortcut = True
 | 
						|
                    block_list.append(basic_block)
 | 
						|
                self.out_channels.append(num_filters[block])
 | 
						|
                self.stages.append(nn.Sequential(*block_list))
 | 
						|
 | 
						|
    def forward(self, inputs):
 | 
						|
        out = [inputs]
 | 
						|
        y = self.conv1_1(inputs)
 | 
						|
        y = self.conv1_2(y)
 | 
						|
        y = self.conv1_3(y)
 | 
						|
        out.append(y)
 | 
						|
        y = self.pool2d_max(y)
 | 
						|
        for block in self.stages:
 | 
						|
            y = block(y)
 | 
						|
            out.append(y)
 | 
						|
        return out |