mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			436 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
import cv2
 | 
						|
import copy
 | 
						|
import numpy as np
 | 
						|
import math
 | 
						|
import re
 | 
						|
import sys
 | 
						|
import argparse
 | 
						|
import string
 | 
						|
from copy import deepcopy
 | 
						|
 | 
						|
 | 
						|
class DetResizeForTest(object):
 | 
						|
    def __init__(self, **kwargs):
 | 
						|
        super(DetResizeForTest, self).__init__()
 | 
						|
        self.resize_type = 0
 | 
						|
        if 'image_shape' in kwargs:
 | 
						|
            self.image_shape = kwargs['image_shape']
 | 
						|
            self.resize_type = 1
 | 
						|
        elif 'limit_side_len' in kwargs:
 | 
						|
            self.limit_side_len = kwargs['limit_side_len']
 | 
						|
            self.limit_type = kwargs.get('limit_type', 'min')
 | 
						|
        elif 'resize_short' in kwargs:
 | 
						|
            self.limit_side_len = 736
 | 
						|
            self.limit_type = 'min'
 | 
						|
        else:
 | 
						|
            self.resize_type = 2
 | 
						|
            self.resize_long = kwargs.get('resize_long', 960)
 | 
						|
 | 
						|
    def __call__(self, data):
 | 
						|
        img = deepcopy(data)
 | 
						|
        src_h, src_w, _ = img.shape
 | 
						|
 | 
						|
        if self.resize_type == 0:
 | 
						|
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
 | 
						|
        elif self.resize_type == 2:
 | 
						|
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
 | 
						|
        else:
 | 
						|
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
 | 
						|
 | 
						|
        return img
 | 
						|
 | 
						|
    def resize_image_type1(self, img):
 | 
						|
        resize_h, resize_w = self.image_shape
 | 
						|
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
 | 
						|
        ratio_h = float(resize_h) / ori_h
 | 
						|
        ratio_w = float(resize_w) / ori_w
 | 
						|
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | 
						|
        return img, [ratio_h, ratio_w]
 | 
						|
 | 
						|
    def resize_image_type0(self, img):
 | 
						|
        """
 | 
						|
        resize image to a size multiple of 32 which is required by the network
 | 
						|
        args:
 | 
						|
            img(array): array with shape [h, w, c]
 | 
						|
        return(tuple):
 | 
						|
            img, (ratio_h, ratio_w)
 | 
						|
        """
 | 
						|
        limit_side_len = self.limit_side_len
 | 
						|
        h, w, _ = img.shape
 | 
						|
 | 
						|
        # limit the max side
 | 
						|
        if self.limit_type == 'max':
 | 
						|
            if max(h, w) > limit_side_len:
 | 
						|
                if h > w:
 | 
						|
                    ratio = float(limit_side_len) / h
 | 
						|
                else:
 | 
						|
                    ratio = float(limit_side_len) / w
 | 
						|
            else:
 | 
						|
                ratio = 1.
 | 
						|
        else:
 | 
						|
            if min(h, w) < limit_side_len:
 | 
						|
                if h < w:
 | 
						|
                    ratio = float(limit_side_len) / h
 | 
						|
                else:
 | 
						|
                    ratio = float(limit_side_len) / w
 | 
						|
            else:
 | 
						|
                ratio = 1.
 | 
						|
        resize_h = int(h * ratio)
 | 
						|
        resize_w = int(w * ratio)
 | 
						|
 | 
						|
        resize_h = int(round(resize_h / 32) * 32)
 | 
						|
        resize_w = int(round(resize_w / 32) * 32)
 | 
						|
 | 
						|
        try:
 | 
						|
            if int(resize_w) <= 0 or int(resize_h) <= 0:
 | 
						|
                return None, (None, None)
 | 
						|
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | 
						|
        except:
 | 
						|
            print(img.shape, resize_w, resize_h)
 | 
						|
            sys.exit(0)
 | 
						|
        ratio_h = resize_h / float(h)
 | 
						|
        ratio_w = resize_w / float(w)
 | 
						|
        # return img, np.array([h, w])
 | 
						|
        return img, [ratio_h, ratio_w]
 | 
						|
 | 
						|
    def resize_image_type2(self, img):
 | 
						|
        h, w, _ = img.shape
 | 
						|
 | 
						|
        resize_w = w
 | 
						|
        resize_h = h
 | 
						|
 | 
						|
        # Fix the longer side
 | 
						|
        if resize_h > resize_w:
 | 
						|
            ratio = float(self.resize_long) / resize_h
 | 
						|
        else:
 | 
						|
            ratio = float(self.resize_long) / resize_w
 | 
						|
 | 
						|
        resize_h = int(resize_h * ratio)
 | 
						|
        resize_w = int(resize_w * ratio)
 | 
						|
 | 
						|
        max_stride = 128
 | 
						|
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 | 
						|
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 | 
						|
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | 
						|
        ratio_h = resize_h / float(h)
 | 
						|
        ratio_w = resize_w / float(w)
 | 
						|
 | 
						|
        return img, [ratio_h, ratio_w]
 | 
						|
 | 
						|
 | 
						|
class BaseRecLabelDecode(object):
 | 
						|
    """ Convert between text-label and text-index """
 | 
						|
 | 
						|
    def __init__(self, config):
 | 
						|
        support_character_type = [
 | 
						|
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
 | 
						|
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
 | 
						|
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
 | 
						|
            'ne', 'EN'
 | 
						|
        ]
 | 
						|
        character_type = config['character_type']
 | 
						|
        character_dict_path = config['character_dict_path']
 | 
						|
        use_space_char = True
 | 
						|
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
 | 
						|
            support_character_type, character_type)
 | 
						|
 | 
						|
        self.beg_str = "sos"
 | 
						|
        self.end_str = "eos"
 | 
						|
 | 
						|
        if character_type == "en":
 | 
						|
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        elif character_type == "EN_symbol":
 | 
						|
            # same with ASTER setting (use 94 char).
 | 
						|
            self.character_str = string.printable[:-6]
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        elif character_type in support_character_type:
 | 
						|
            self.character_str = ""
 | 
						|
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
 | 
						|
                character_type)
 | 
						|
            with open(character_dict_path, "rb") as fin:
 | 
						|
                lines = fin.readlines()
 | 
						|
                for line in lines:
 | 
						|
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
 | 
						|
                    self.character_str += line
 | 
						|
            if use_space_char:
 | 
						|
                self.character_str += " "
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
 | 
						|
        else:
 | 
						|
            raise NotImplementedError
 | 
						|
        self.character_type = character_type
 | 
						|
        dict_character = self.add_special_char(dict_character)
 | 
						|
        self.dict = {}
 | 
						|
        for i, char in enumerate(dict_character):
 | 
						|
            self.dict[char] = i
 | 
						|
        self.character = dict_character
 | 
						|
 | 
						|
    def add_special_char(self, dict_character):
 | 
						|
        return dict_character
 | 
						|
 | 
						|
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
 | 
						|
        """ convert text-index into text-label. """
 | 
						|
        result_list = []
 | 
						|
        ignored_tokens = self.get_ignored_tokens()
 | 
						|
        batch_size = len(text_index)
 | 
						|
        for batch_idx in range(batch_size):
 | 
						|
            char_list = []
 | 
						|
            conf_list = []
 | 
						|
            for idx in range(len(text_index[batch_idx])):
 | 
						|
                if text_index[batch_idx][idx] in ignored_tokens:
 | 
						|
                    continue
 | 
						|
                if is_remove_duplicate:
 | 
						|
                    # only for predict
 | 
						|
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
 | 
						|
                            batch_idx][idx]:
 | 
						|
                        continue
 | 
						|
                char_list.append(self.character[int(text_index[batch_idx][
 | 
						|
                    idx])])
 | 
						|
                if text_prob is not None:
 | 
						|
                    conf_list.append(text_prob[batch_idx][idx])
 | 
						|
                else:
 | 
						|
                    conf_list.append(1)
 | 
						|
            text = ''.join(char_list)
 | 
						|
            result_list.append((text, np.mean(conf_list)))
 | 
						|
        return result_list
 | 
						|
 | 
						|
    def get_ignored_tokens(self):
 | 
						|
        return [0]  # for ctc blank
 | 
						|
 | 
						|
 | 
						|
class CTCLabelDecode(BaseRecLabelDecode):
 | 
						|
    """ Convert between text-label and text-index """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            config,
 | 
						|
            #character_dict_path=None,
 | 
						|
            #character_type='ch',
 | 
						|
            #use_space_char=False,
 | 
						|
            **kwargs):
 | 
						|
        super(CTCLabelDecode, self).__init__(config)
 | 
						|
 | 
						|
    def __call__(self, preds, label=None, *args, **kwargs):
 | 
						|
        preds_idx = preds.argmax(axis=2)
 | 
						|
        preds_prob = preds.max(axis=2)
 | 
						|
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
 | 
						|
        if label is None:
 | 
						|
            return text
 | 
						|
        label = self.decode(label)
 | 
						|
        return text, label
 | 
						|
 | 
						|
    def add_special_char(self, dict_character):
 | 
						|
        dict_character = ['blank'] + dict_character
 | 
						|
        return dict_character
 | 
						|
 | 
						|
 | 
						|
class CharacterOps(object):
 | 
						|
    """ Convert between text-label and text-index """
 | 
						|
 | 
						|
    def __init__(self, config):
 | 
						|
        self.character_type = config['character_type']
 | 
						|
        self.loss_type = config['loss_type']
 | 
						|
        if self.character_type == "en":
 | 
						|
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        elif self.character_type == "ch":
 | 
						|
            character_dict_path = config['character_dict_path']
 | 
						|
            self.character_str = ""
 | 
						|
            with open(character_dict_path, "rb") as fin:
 | 
						|
                lines = fin.readlines()
 | 
						|
                for line in lines:
 | 
						|
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
 | 
						|
                    self.character_str += line
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        elif self.character_type == "en_sensitive":
 | 
						|
            # same with ASTER setting (use 94 char).
 | 
						|
            self.character_str = string.printable[:-6]
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        else:
 | 
						|
            self.character_str = None
 | 
						|
        assert self.character_str is not None, \
 | 
						|
            "Nonsupport type of the character: {}".format(self.character_str)
 | 
						|
        self.beg_str = "sos"
 | 
						|
        self.end_str = "eos"
 | 
						|
        if self.loss_type == "attention":
 | 
						|
            dict_character = [self.beg_str, self.end_str] + dict_character
 | 
						|
        self.dict = {}
 | 
						|
        for i, char in enumerate(dict_character):
 | 
						|
            self.dict[char] = i
 | 
						|
        self.character = dict_character
 | 
						|
 | 
						|
    def encode(self, text):
 | 
						|
        """convert text-label into text-index.
 | 
						|
        input:
 | 
						|
            text: text labels of each image. [batch_size]
 | 
						|
 | 
						|
        output:
 | 
						|
            text: concatenated text index for CTCLoss.
 | 
						|
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
 | 
						|
            length: length of each text. [batch_size]
 | 
						|
        """
 | 
						|
        if self.character_type == "en":
 | 
						|
            text = text.lower()
 | 
						|
 | 
						|
        text_list = []
 | 
						|
        for char in text:
 | 
						|
            if char not in self.dict:
 | 
						|
                continue
 | 
						|
            text_list.append(self.dict[char])
 | 
						|
        text = np.array(text_list)
 | 
						|
        return text
 | 
						|
 | 
						|
    def decode(self, text_index, is_remove_duplicate=False):
 | 
						|
        """ convert text-index into text-label. """
 | 
						|
        char_list = []
 | 
						|
        char_num = self.get_char_num()
 | 
						|
 | 
						|
        if self.loss_type == "attention":
 | 
						|
            beg_idx = self.get_beg_end_flag_idx("beg")
 | 
						|
            end_idx = self.get_beg_end_flag_idx("end")
 | 
						|
            ignored_tokens = [beg_idx, end_idx]
 | 
						|
        else:
 | 
						|
            ignored_tokens = [char_num]
 | 
						|
 | 
						|
        for idx in range(len(text_index)):
 | 
						|
            if text_index[idx] in ignored_tokens:
 | 
						|
                continue
 | 
						|
            if is_remove_duplicate:
 | 
						|
                if idx > 0 and text_index[idx - 1] == text_index[idx]:
 | 
						|
                    continue
 | 
						|
            char_list.append(self.character[text_index[idx]])
 | 
						|
        text = ''.join(char_list)
 | 
						|
        return text
 | 
						|
 | 
						|
    def get_char_num(self):
 | 
						|
        return len(self.character)
 | 
						|
 | 
						|
    def get_beg_end_flag_idx(self, beg_or_end):
 | 
						|
        if self.loss_type == "attention":
 | 
						|
            if beg_or_end == "beg":
 | 
						|
                idx = np.array(self.dict[self.beg_str])
 | 
						|
            elif beg_or_end == "end":
 | 
						|
                idx = np.array(self.dict[self.end_str])
 | 
						|
            else:
 | 
						|
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
 | 
						|
                    % beg_or_end
 | 
						|
            return idx
 | 
						|
        else:
 | 
						|
            err = "error in get_beg_end_flag_idx when using the loss %s"\
 | 
						|
                % (self.loss_type)
 | 
						|
            assert False, err
 | 
						|
 | 
						|
 | 
						|
class OCRReader(object):
 | 
						|
    def __init__(self,
 | 
						|
                 algorithm="CRNN",
 | 
						|
                 image_shape=[3, 32, 320],
 | 
						|
                 char_type="ch",
 | 
						|
                 batch_num=1,
 | 
						|
                 char_dict_path="./ppocr_keys_v1.txt"):
 | 
						|
        self.rec_image_shape = image_shape
 | 
						|
        self.character_type = char_type
 | 
						|
        self.rec_batch_num = batch_num
 | 
						|
        char_ops_params = {}
 | 
						|
        char_ops_params["character_type"] = char_type
 | 
						|
        char_ops_params["character_dict_path"] = char_dict_path
 | 
						|
        char_ops_params['loss_type'] = 'ctc'
 | 
						|
        self.char_ops = CharacterOps(char_ops_params)
 | 
						|
        self.label_ops = CTCLabelDecode(char_ops_params)
 | 
						|
 | 
						|
    def resize_norm_img(self, img, max_wh_ratio):
 | 
						|
        imgC, imgH, imgW = self.rec_image_shape
 | 
						|
        if self.character_type == "ch":
 | 
						|
            imgW = int(32 * max_wh_ratio)
 | 
						|
        h = img.shape[0]
 | 
						|
        w = img.shape[1]
 | 
						|
        ratio = w / float(h)
 | 
						|
        if math.ceil(imgH * ratio) > imgW:
 | 
						|
            resized_w = imgW
 | 
						|
        else:
 | 
						|
            resized_w = int(math.ceil(imgH * ratio))
 | 
						|
        resized_image = cv2.resize(img, (resized_w, imgH))
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        resized_image = resized_image.transpose((2, 0, 1)) / 255
 | 
						|
        resized_image -= 0.5
 | 
						|
        resized_image /= 0.5
 | 
						|
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
 | 
						|
 | 
						|
        padding_im[:, :, 0:resized_w] = resized_image
 | 
						|
        return padding_im
 | 
						|
 | 
						|
    def preprocess(self, img_list):
 | 
						|
        img_num = len(img_list)
 | 
						|
        norm_img_batch = []
 | 
						|
        max_wh_ratio = 0
 | 
						|
        for ino in range(img_num):
 | 
						|
            h, w = img_list[ino].shape[0:2]
 | 
						|
            wh_ratio = w * 1.0 / h
 | 
						|
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
 | 
						|
 | 
						|
        for ino in range(img_num):
 | 
						|
            norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
 | 
						|
            norm_img = norm_img[np.newaxis, :]
 | 
						|
            norm_img_batch.append(norm_img)
 | 
						|
        norm_img_batch = np.concatenate(norm_img_batch)
 | 
						|
        norm_img_batch = norm_img_batch.copy()
 | 
						|
 | 
						|
        return norm_img_batch[0]
 | 
						|
 | 
						|
    def postprocess_old(self, outputs, with_score=False):
 | 
						|
        rec_res = []
 | 
						|
        rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"]
 | 
						|
        rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"]
 | 
						|
        if with_score:
 | 
						|
            predict_lod = outputs["softmax_0.tmp_0.lod"]
 | 
						|
        for rno in range(len(rec_idx_lod) - 1):
 | 
						|
            beg = rec_idx_lod[rno]
 | 
						|
            end = rec_idx_lod[rno + 1]
 | 
						|
            if isinstance(rec_idx_batch, list):
 | 
						|
                rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]]
 | 
						|
            else:  #nd array
 | 
						|
                rec_idx_tmp = rec_idx_batch[beg:end, 0]
 | 
						|
            preds_text = self.char_ops.decode(rec_idx_tmp)
 | 
						|
            if with_score:
 | 
						|
                beg = predict_lod[rno]
 | 
						|
                end = predict_lod[rno + 1]
 | 
						|
                if isinstance(outputs["softmax_0.tmp_0"], list):
 | 
						|
                    outputs["softmax_0.tmp_0"] = np.array(outputs[
 | 
						|
                        "softmax_0.tmp_0"]).astype(np.float32)
 | 
						|
                probs = outputs["softmax_0.tmp_0"][beg:end, :]
 | 
						|
                ind = np.argmax(probs, axis=1)
 | 
						|
                blank = probs.shape[1]
 | 
						|
                valid_ind = np.where(ind != (blank - 1))[0]
 | 
						|
                score = np.mean(probs[valid_ind, ind[valid_ind]])
 | 
						|
                rec_res.append([preds_text, score])
 | 
						|
            else:
 | 
						|
                rec_res.append([preds_text])
 | 
						|
        return rec_res
 | 
						|
 | 
						|
    def postprocess(self, outputs, with_score=False):
 | 
						|
        preds = outputs["save_infer_model/scale_0.tmp_1"]
 | 
						|
        try:
 | 
						|
            preds = preds.numpy()
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
        preds_idx = preds.argmax(axis=2)
 | 
						|
        preds_prob = preds.max(axis=2)
 | 
						|
        text = self.label_ops.decode(
 | 
						|
            preds_idx, preds_prob, is_remove_duplicate=True)
 | 
						|
        return text
 |