mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | |
| 
 | |
| import cv2
 | |
| import json
 | |
| import paddle
 | |
| 
 | |
| from ppocr.data import create_operators, transform
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.save_load import load_model
 | |
| from ppocr.utils.utility import get_image_file_list
 | |
| import tools.program as program
 | |
| 
 | |
| 
 | |
| def draw_det_res(dt_boxes, config, img, img_name, save_path):
 | |
|     if len(dt_boxes) > 0:
 | |
|         import cv2
 | |
|         src_im = img
 | |
|         for box in dt_boxes:
 | |
|             box = box.astype(np.int32).reshape((-1, 1, 2))
 | |
|             cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
 | |
|         if not os.path.exists(save_path):
 | |
|             os.makedirs(save_path)
 | |
|         save_path = os.path.join(save_path, os.path.basename(img_name))
 | |
|         cv2.imwrite(save_path, src_im)
 | |
|         logger.info("The detected Image saved in {}".format(save_path))
 | |
| 
 | |
| 
 | |
| @paddle.no_grad()
 | |
| def main():
 | |
|     global_config = config['Global']
 | |
| 
 | |
|     # build model
 | |
|     model = build_model(config['Architecture'])
 | |
| 
 | |
|     load_model(config, model)
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'])
 | |
| 
 | |
|     # create data ops
 | |
|     transforms = []
 | |
|     for op in config['Eval']['dataset']['transforms']:
 | |
|         op_name = list(op)[0]
 | |
|         if 'Label' in op_name:
 | |
|             continue
 | |
|         elif op_name == 'KeepKeys':
 | |
|             op[op_name]['keep_keys'] = ['image', 'shape']
 | |
|         transforms.append(op)
 | |
| 
 | |
|     ops = create_operators(transforms, global_config)
 | |
| 
 | |
|     save_res_path = config['Global']['save_res_path']
 | |
|     if not os.path.exists(os.path.dirname(save_res_path)):
 | |
|         os.makedirs(os.path.dirname(save_res_path))
 | |
| 
 | |
|     model.eval()
 | |
|     with open(save_res_path, "wb") as fout:
 | |
|         for file in get_image_file_list(config['Global']['infer_img']):
 | |
|             logger.info("infer_img: {}".format(file))
 | |
|             with open(file, 'rb') as f:
 | |
|                 img = f.read()
 | |
|                 data = {'image': img}
 | |
|             batch = transform(data, ops)
 | |
| 
 | |
|             images = np.expand_dims(batch[0], axis=0)
 | |
|             shape_list = np.expand_dims(batch[1], axis=0)
 | |
|             images = paddle.to_tensor(images)
 | |
|             preds = model(images)
 | |
|             post_result = post_process_class(preds, shape_list)
 | |
| 
 | |
|             src_img = cv2.imread(file)
 | |
| 
 | |
|             dt_boxes_json = []
 | |
|             # parser boxes if post_result is dict
 | |
|             if isinstance(post_result, dict):
 | |
|                 det_box_json = {}
 | |
|                 for k in post_result.keys():
 | |
|                     boxes = post_result[k][0]['points']
 | |
|                     dt_boxes_list = []
 | |
|                     for box in boxes:
 | |
|                         tmp_json = {"transcription": ""}
 | |
|                         tmp_json['points'] = box.tolist()
 | |
|                         dt_boxes_list.append(tmp_json)
 | |
|                     det_box_json[k] = dt_boxes_list
 | |
|                     save_det_path = os.path.dirname(config['Global'][
 | |
|                         'save_res_path']) + "/det_results_{}/".format(k)
 | |
|                     draw_det_res(boxes, config, src_img, file, save_det_path)
 | |
|             else:
 | |
|                 boxes = post_result[0]['points']
 | |
|                 dt_boxes_json = []
 | |
|                 # write result
 | |
|                 for box in boxes:
 | |
|                     tmp_json = {"transcription": ""}
 | |
|                     tmp_json['points'] = box.tolist()
 | |
|                     dt_boxes_json.append(tmp_json)
 | |
|                 save_det_path = os.path.dirname(config['Global'][
 | |
|                     'save_res_path']) + "/det_results/"
 | |
|                 draw_det_res(boxes, config, src_img, file, save_det_path)
 | |
|             otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
 | |
|             fout.write(otstr.encode())
 | |
| 
 | |
|     logger.info("success!")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     config, device, logger, vdl_writer = program.preprocess()
 | |
|     main()
 | 
