mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-26 21:24:27 +00:00
192 lines
7.1 KiB
Python
192 lines
7.1 KiB
Python
import cv2
|
|
import numpy as np
|
|
import pyclipper
|
|
import paddle
|
|
from shapely.geometry import Polygon
|
|
|
|
|
|
class SegDetectorRepresenter:
|
|
def __init__(
|
|
self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5
|
|
):
|
|
self.min_size = 3
|
|
self.thresh = thresh
|
|
self.box_thresh = box_thresh
|
|
self.max_candidates = max_candidates
|
|
self.unclip_ratio = unclip_ratio
|
|
|
|
def __call__(self, batch, pred, is_output_polygon=False):
|
|
"""
|
|
batch: (image, polygons, ignore_tags
|
|
batch: a dict produced by dataloaders.
|
|
image: tensor of shape (N, C, H, W).
|
|
polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
|
|
ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
|
|
shape: the original shape of images.
|
|
filename: the original filenames of images.
|
|
pred:
|
|
binary: text region segmentation map, with shape (N, H, W)
|
|
thresh: [if exists] thresh hold prediction with shape (N, H, W)
|
|
thresh_binary: [if exists] binarized with threshhold, (N, H, W)
|
|
"""
|
|
if isinstance(pred, paddle.Tensor):
|
|
pred = pred.numpy()
|
|
pred = pred[:, 0, :, :]
|
|
segmentation = self.binarize(pred)
|
|
boxes_batch = []
|
|
scores_batch = []
|
|
for batch_index in range(pred.shape[0]):
|
|
height, width = batch["shape"][batch_index]
|
|
if is_output_polygon:
|
|
boxes, scores = self.polygons_from_bitmap(
|
|
pred[batch_index], segmentation[batch_index], width, height
|
|
)
|
|
else:
|
|
boxes, scores = self.boxes_from_bitmap(
|
|
pred[batch_index], segmentation[batch_index], width, height
|
|
)
|
|
boxes_batch.append(boxes)
|
|
scores_batch.append(scores)
|
|
return boxes_batch, scores_batch
|
|
|
|
def binarize(self, pred):
|
|
return pred > self.thresh
|
|
|
|
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
|
"""
|
|
_bitmap: single map with shape (H, W),
|
|
whose values are binarized as {0, 1}
|
|
"""
|
|
|
|
assert len(_bitmap.shape) == 2
|
|
bitmap = _bitmap # The first channel
|
|
height, width = bitmap.shape
|
|
boxes = []
|
|
scores = []
|
|
|
|
contours, _ = cv2.findContours(
|
|
(bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
|
|
for contour in contours[: self.max_candidates]:
|
|
epsilon = 0.005 * cv2.arcLength(contour, True)
|
|
approx = cv2.approxPolyDP(contour, epsilon, True)
|
|
points = approx.reshape((-1, 2))
|
|
if points.shape[0] < 4:
|
|
continue
|
|
# _, sside = self.get_mini_boxes(contour)
|
|
# if sside < self.min_size:
|
|
# continue
|
|
score = self.box_score_fast(pred, contour.squeeze(1))
|
|
if self.box_thresh > score:
|
|
continue
|
|
|
|
if points.shape[0] > 2:
|
|
box = self.unclip(points, unclip_ratio=self.unclip_ratio)
|
|
if len(box) > 1:
|
|
continue
|
|
else:
|
|
continue
|
|
box = box.reshape(-1, 2)
|
|
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
|
|
if sside < self.min_size + 2:
|
|
continue
|
|
|
|
if not isinstance(dest_width, int):
|
|
dest_width = dest_width.item()
|
|
dest_height = dest_height.item()
|
|
|
|
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
|
box[:, 1] = np.clip(
|
|
np.round(box[:, 1] / height * dest_height), 0, dest_height
|
|
)
|
|
boxes.append(box)
|
|
scores.append(score)
|
|
return boxes, scores
|
|
|
|
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
|
"""
|
|
_bitmap: single map with shape (H, W),
|
|
whose values are binarized as {0, 1}
|
|
"""
|
|
|
|
assert len(_bitmap.shape) == 2
|
|
bitmap = _bitmap # The first channel
|
|
height, width = bitmap.shape
|
|
contours, _ = cv2.findContours(
|
|
(bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
num_contours = min(len(contours), self.max_candidates)
|
|
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
|
|
scores = np.zeros((num_contours,), dtype=np.float32)
|
|
|
|
for index in range(num_contours):
|
|
contour = contours[index].squeeze(1)
|
|
points, sside = self.get_mini_boxes(contour)
|
|
if sside < self.min_size:
|
|
continue
|
|
points = np.array(points)
|
|
score = self.box_score_fast(pred, contour)
|
|
if self.box_thresh > score:
|
|
continue
|
|
|
|
box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
|
|
box, sside = self.get_mini_boxes(box)
|
|
if sside < self.min_size + 2:
|
|
continue
|
|
box = np.array(box)
|
|
if not isinstance(dest_width, int):
|
|
dest_width = dest_width.item()
|
|
dest_height = dest_height.item()
|
|
|
|
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
|
box[:, 1] = np.clip(
|
|
np.round(box[:, 1] / height * dest_height), 0, dest_height
|
|
)
|
|
boxes[index, :, :] = box.astype(np.int16)
|
|
scores[index] = score
|
|
return boxes, scores
|
|
|
|
def unclip(self, box, unclip_ratio=1.5):
|
|
poly = Polygon(box)
|
|
distance = poly.area * unclip_ratio / poly.length
|
|
offset = pyclipper.PyclipperOffset()
|
|
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
expanded = np.array(offset.Execute(distance))
|
|
return expanded
|
|
|
|
def get_mini_boxes(self, contour):
|
|
bounding_box = cv2.minAreaRect(contour)
|
|
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
|
|
|
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
|
if points[1][1] > points[0][1]:
|
|
index_1 = 0
|
|
index_4 = 1
|
|
else:
|
|
index_1 = 1
|
|
index_4 = 0
|
|
if points[3][1] > points[2][1]:
|
|
index_2 = 2
|
|
index_3 = 3
|
|
else:
|
|
index_2 = 3
|
|
index_3 = 2
|
|
|
|
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
|
|
return box, min(bounding_box[1])
|
|
|
|
def box_score_fast(self, bitmap, _box):
|
|
h, w = bitmap.shape[:2]
|
|
box = _box.copy()
|
|
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
|
|
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
|
|
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
|
|
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
|
|
|
|
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
|
box[:, 0] = box[:, 0] - xmin
|
|
box[:, 1] = box[:, 1] - ymin
|
|
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
|
return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]
|