PaddleOCR/doc/doc_ch/algorithm_det_fcenet.md
2022-07-04 10:22:25 +00:00

103 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# FCENet
- [1. 算法简介](#1-算法简介)
- [2. 环境配置](#2-环境配置)
- [3. 模型训练、评估、预测](#3-模型训练评估预测)
- [4. 推理部署](#4-推理部署)
- [4.1 Python推理](#41-python推理)
- [4.2 C++推理](#42-c推理)
- [4.3 Serving服务化部署](#43-serving服务化部署)
- [4.4 更多推理部署](#44-更多推理部署)
- [5. FAQ](#5-faq)
- [引用](#引用)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [Fourier Contour Embedding for Arbitrary-Shaped Text Detection](https://arxiv.org/abs/2104.10442)
> Yiqin Zhu and Jianyong Chen and Lingyu Liang and Zhanghui Kuang and Lianwen Jin and Wayne Zhang
> CVPR, 2021
在CTW1500文本检测公开数据集上算法复现效果如下
| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接|
|-----| --- | --- | --- | --- | --- | --- |
| FCE | ResNet50_dcn | [configs/det/det_r50_vd_dcn_fce_ctw.yml](../../configs/det/det_r50_vd_dcn_fce_ctw.yml)| 88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
上述FCE模型使用CTW1500文本检测公开数据集训练得到数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)。
数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化训练不同的检测模型只需要**更换配置文件**即可。
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将FCE文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd_dcn骨干网络在CTW1500英文数据集训练的模型为例 [模型下载地址](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) ),可以使用如下命令进行转换:
```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_dcn_fce_ctw.yml -o Global.pretrained_model=./det_r50_dcn_fce_ctw_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_fce
```
FCE文本检测模型推理执行非弯曲文本检测可以执行如下命令
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_fce/" --det_algorithm="FCE" --det_fce_box_type=quad
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img_10_fce.jpg)
如果想执行弯曲文本检测,可以执行如下命令:
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_fce/" --det_algorithm="FCE" --det_fce_box_type=poly
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img623_fce.jpg)
**注意**由于CTW1500数据集只有1000张训练图像且主要针对英文场景所以上述模型对中文文本图像检测效果会比较差。
<a name="4-2"></a>
### 4.2 C++推理
由于后处理暂未使用CPP编写FCE文本检测模型暂不支持CPP推理。
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂未支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂未支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@InProceedings{zhu2021fourier,
title={Fourier Contour Embedding for Arbitrary-Shaped Text Detection},
author={Yiqin Zhu and Jianyong Chen and Lingyu Liang and Zhanghui Kuang and Lianwen Jin and Wayne Zhang},
year={2021},
booktitle = {CVPR}
}
```