PaddleOCR/doc/doc_ch/algorithm_rec_rosetta.md
2022-04-29 03:48:06 +00:00

124 lines
4.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Rosetta
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [Rosetta: Large Scale System for Text Detection and Recognition in Images](https://arxiv.org/abs/1910.05085)
> Borisyuk F , Gordo A , V Sivakumar
> KDD, 2018
使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估 算法复现效果如下:
|模型|骨干网络|配置文件|Avg Accuracy|下载链接|
| --- | --- | --- | --- | --- |
|Rosetta|Resnet34_vd|[configs/rec/rec_r34_vd_none_none_ctc.yml](../../configs/rec/rec_r34_vd_none_none_ctc.yml)|79.11%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|[configs/rec/rec_mv3_none_none_ctc.yml](../../configs/rec/rec_mv3_none_none_ctc.yml)|75.80%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化训练不同的识别模型只需要**更换配置文件**即可。 以基于Resnet34_vd骨干网络为例:
<a name="3-1"></a>
### 3.1 训练
```
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r34_vd_none_none_ctc.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_none_none_ctc.yml
```
<a name="3-2"></a>
### 3.2 评估
```
# GPU评估, Global.pretrained_model为待评估模型
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
<a name="3-3"></a>
### 3.3 预测
```
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将Rosetta文本识别训练过程中保存的模型转换成inference model。以基于Resnet34_vd骨干网络在MJSynth和SynthText两个文字识别数据集训练得到的模型为例 [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
```shell
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_none_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_rosetta
```
Rosetta文本识别模型推理可以执行如下命令
```shell
python3 tools/infer/predict_rec.py --image_dir="doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_rosetta/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
```
推理结果如下所示:
![](../../doc/imgs_words/en/word_1.png)
```
Predicts of doc/imgs_words/en/word_1.png:('joint', 0.9999982714653015)
```
<a name="4-2"></a>
### 4.2 C++推理
暂不支持
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂不支持
<a name="4-4"></a>
### 4.4 更多推理部署
Rosetta模型还支持以下推理部署方式
- Paddle2ONNX推理准备好推理模型后参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@inproceedings{2018Rosetta,
title={Rosetta: Large Scale System for Text Detection and Recognition in Images},
author={ Borisyuk, Fedor and Gordo, Albert and Sivakumar, Viswanath },
booktitle={the 24th ACM SIGKDD International Conference},
year={2018},
}
```