mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import logging
 | |
| import os
 | |
| import imghdr
 | |
| import cv2
 | |
| 
 | |
| 
 | |
| def print_dict(d, logger, delimiter=0):
 | |
|     """
 | |
|     Recursively visualize a dict and
 | |
|     indenting acrrording by the relationship of keys.
 | |
|     """
 | |
|     for k, v in sorted(d.items()):
 | |
|         if isinstance(v, dict):
 | |
|             logger.info("{}{} : ".format(delimiter * " ", str(k)))
 | |
|             print_dict(v, logger, delimiter + 4)
 | |
|         elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
 | |
|             logger.info("{}{} : ".format(delimiter * " ", str(k)))
 | |
|             for value in v:
 | |
|                 print_dict(value, logger, delimiter + 4)
 | |
|         else:
 | |
|             logger.info("{}{} : {}".format(delimiter * " ", k, v))
 | |
| 
 | |
| 
 | |
| def get_check_global_params(mode):
 | |
|     check_params = ['use_gpu', 'max_text_length', 'image_shape', \
 | |
|                     'image_shape', 'character_type', 'loss_type']
 | |
|     if mode == "train_eval":
 | |
|         check_params = check_params + [ \
 | |
|             'train_batch_size_per_card', 'test_batch_size_per_card']
 | |
|     elif mode == "test":
 | |
|         check_params = check_params + ['test_batch_size_per_card']
 | |
|     return check_params
 | |
| 
 | |
| 
 | |
| def get_image_file_list(img_file):
 | |
|     imgs_lists = []
 | |
|     if img_file is None or not os.path.exists(img_file):
 | |
|         raise Exception("not found any img file in {}".format(img_file))
 | |
| 
 | |
|     img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
 | |
|     if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
 | |
|         imgs_lists.append(img_file)
 | |
|     elif os.path.isdir(img_file):
 | |
|         for single_file in os.listdir(img_file):
 | |
|             file_path = os.path.join(img_file, single_file)
 | |
|             if imghdr.what(file_path) in img_end:
 | |
|                 imgs_lists.append(file_path)
 | |
|     if len(imgs_lists) == 0:
 | |
|         raise Exception("not found any img file in {}".format(img_file))
 | |
|     return imgs_lists
 | |
| 
 | |
| 
 | |
| def check_and_read_gif(img_path):
 | |
|     if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
 | |
|         gif = cv2.VideoCapture(img_path)
 | |
|         ret, frame = gif.read()
 | |
|         if not ret:
 | |
|             logger = logging.getLogger('ppocr')
 | |
|             logger.info("Cannot read {}. This gif image maybe corrupted.")
 | |
|             return None, False
 | |
|         if len(frame.shape) == 2 or frame.shape[-1] == 1:
 | |
|             frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
 | |
|         imgvalue = frame[:, :, ::-1]
 | |
|         return imgvalue, True
 | |
|     return None, False | 
