mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	* support min_area_rect crop * add check_install * fix requirement.txt * fix check_install * add lanms-neo for drrg * fix * fix doc * fix
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import math
 | 
						|
import paddle
 | 
						|
from paddle import nn
 | 
						|
import paddle.nn.functional as F
 | 
						|
from paddle import ParamAttr
 | 
						|
 | 
						|
 | 
						|
def get_bias_attr(k):
 | 
						|
    stdv = 1.0 / math.sqrt(k * 1.0)
 | 
						|
    initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
 | 
						|
    bias_attr = ParamAttr(initializer=initializer)
 | 
						|
    return bias_attr
 | 
						|
 | 
						|
 | 
						|
class Head(nn.Layer):
 | 
						|
    def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs):
 | 
						|
        super(Head, self).__init__()
 | 
						|
 | 
						|
        self.conv1 = nn.Conv2D(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=in_channels // 4,
 | 
						|
            kernel_size=kernel_list[0],
 | 
						|
            padding=int(kernel_list[0] // 2),
 | 
						|
            weight_attr=ParamAttr(),
 | 
						|
            bias_attr=False)
 | 
						|
        self.conv_bn1 = nn.BatchNorm(
 | 
						|
            num_channels=in_channels // 4,
 | 
						|
            param_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.Constant(value=1.0)),
 | 
						|
            bias_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
 | 
						|
            act='relu')
 | 
						|
        self.conv2 = nn.Conv2DTranspose(
 | 
						|
            in_channels=in_channels // 4,
 | 
						|
            out_channels=in_channels // 4,
 | 
						|
            kernel_size=kernel_list[1],
 | 
						|
            stride=2,
 | 
						|
            weight_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.KaimingUniform()),
 | 
						|
            bias_attr=get_bias_attr(in_channels // 4))
 | 
						|
        self.conv_bn2 = nn.BatchNorm(
 | 
						|
            num_channels=in_channels // 4,
 | 
						|
            param_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.Constant(value=1.0)),
 | 
						|
            bias_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
 | 
						|
            act="relu")
 | 
						|
        self.conv3 = nn.Conv2DTranspose(
 | 
						|
            in_channels=in_channels // 4,
 | 
						|
            out_channels=1,
 | 
						|
            kernel_size=kernel_list[2],
 | 
						|
            stride=2,
 | 
						|
            weight_attr=ParamAttr(
 | 
						|
                initializer=paddle.nn.initializer.KaimingUniform()),
 | 
						|
            bias_attr=get_bias_attr(in_channels // 4), )
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.conv1(x)
 | 
						|
        x = self.conv_bn1(x)
 | 
						|
        x = self.conv2(x)
 | 
						|
        x = self.conv_bn2(x)
 | 
						|
        x = self.conv3(x)
 | 
						|
        x = F.sigmoid(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class DBHead(nn.Layer):
 | 
						|
    """
 | 
						|
    Differentiable Binarization (DB) for text detection:
 | 
						|
        see https://arxiv.org/abs/1911.08947
 | 
						|
    args:
 | 
						|
        params(dict): super parameters for build DB network
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, in_channels, k=50, **kwargs):
 | 
						|
        super(DBHead, self).__init__()
 | 
						|
        self.k = k
 | 
						|
        self.binarize = Head(in_channels, **kwargs)
 | 
						|
        self.thresh = Head(in_channels, **kwargs)
 | 
						|
 | 
						|
    def step_function(self, x, y):
 | 
						|
        return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
 | 
						|
 | 
						|
    def forward(self, x, targets=None):
 | 
						|
        shrink_maps = self.binarize(x)
 | 
						|
        if not self.training:
 | 
						|
            return {'maps': shrink_maps}
 | 
						|
 | 
						|
        threshold_maps = self.thresh(x)
 | 
						|
        binary_maps = self.step_function(shrink_maps, threshold_maps)
 | 
						|
        y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
 | 
						|
        return {'maps': y}
 |