mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			186 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| import math
 | |
| from paddle.nn.initializer import TruncatedNormal, Constant, Normal
 | |
| ones_ = Constant(value=1.)
 | |
| zeros_ = Constant(value=0.)
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
 | |
| 
 | |
| 
 | |
| class Conv_BN_ReLU(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_planes,
 | |
|                  out_planes,
 | |
|                  kernel_size=1,
 | |
|                  stride=1,
 | |
|                  padding=0):
 | |
|         super(Conv_BN_ReLU, self).__init__()
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_planes,
 | |
|             out_planes,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=padding,
 | |
|             bias_attr=False)
 | |
|         self.bn = nn.BatchNorm2D(out_planes)
 | |
|         self.relu = nn.ReLU()
 | |
| 
 | |
|         for m in self.sublayers():
 | |
|             if isinstance(m, nn.Conv2D):
 | |
|                 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
 | |
|                 normal_ = Normal(mean=0.0, std=math.sqrt(2. / n))
 | |
|                 normal_(m.weight)
 | |
|             elif isinstance(m, nn.BatchNorm2D):
 | |
|                 zeros_(m.bias)
 | |
|                 ones_(m.weight)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.relu(self.bn(self.conv(x)))
 | |
| 
 | |
| 
 | |
| class FPEM(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channels):
 | |
|         super(FPEM, self).__init__()
 | |
|         planes = out_channels
 | |
|         self.dwconv3_1 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|         self.dwconv2_1 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|         self.dwconv1_1 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|         self.dwconv2_2 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|         self.dwconv3_2 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|         self.dwconv4_2 = nn.Conv2D(
 | |
|             planes,
 | |
|             planes,
 | |
|             kernel_size=3,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             groups=planes,
 | |
|             bias_attr=False)
 | |
|         self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes)
 | |
| 
 | |
|     def _upsample_add(self, x, y):
 | |
|         return F.upsample(x, scale_factor=2, mode='bilinear') + y
 | |
| 
 | |
|     def forward(self, f1, f2, f3, f4):
 | |
|         # up-down
 | |
|         f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3)))
 | |
|         f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2)))
 | |
|         f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1)))
 | |
| 
 | |
|         # down-up
 | |
|         f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1)))
 | |
|         f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2)))
 | |
|         f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3)))
 | |
| 
 | |
|         return f1, f2, f3, f4
 | |
| 
 | |
| 
 | |
| class CTFPN(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channel=128):
 | |
|         super(CTFPN, self).__init__()
 | |
|         self.out_channels = out_channel * 4
 | |
| 
 | |
|         self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128)
 | |
|         self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128)
 | |
|         self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128)
 | |
|         self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128)
 | |
| 
 | |
|         self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
 | |
|         self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
 | |
| 
 | |
|     def _upsample(self, x, scale=1):
 | |
|         return F.upsample(x, scale_factor=scale, mode='bilinear')
 | |
| 
 | |
|     def forward(self, f):
 | |
|         # # reduce channel
 | |
|         f1 = self.reduce_layer1(f[0])  # N,64,160,160    --> N, 128, 160, 160
 | |
|         f2 = self.reduce_layer2(f[1])  # N, 128, 80, 80  --> N, 128, 80, 80
 | |
|         f3 = self.reduce_layer3(f[2])  # N, 256, 40, 40  --> N, 128, 40, 40
 | |
|         f4 = self.reduce_layer4(f[3])  # N, 512, 20, 20  --> N, 128, 20, 20
 | |
| 
 | |
|         # FPEM
 | |
|         f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4)
 | |
|         f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1)
 | |
| 
 | |
|         # FFM
 | |
|         f1 = f1_1 + f1_2
 | |
|         f2 = f2_1 + f2_2
 | |
|         f3 = f3_1 + f3_2
 | |
|         f4 = f4_1 + f4_2
 | |
| 
 | |
|         f2 = self._upsample(f2, scale=2)
 | |
|         f3 = self._upsample(f3, scale=4)
 | |
|         f4 = self._upsample(f4, scale=8)
 | |
|         ff = paddle.concat((f1, f2, f3, f4), 1)  # N,512, 160,160
 | |
|         return ff
 | 
