mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			281 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| This code is refer from:
 | |
| https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/ppdet/modeling/necks/fpn.py
 | |
| """
 | |
| 
 | |
| import paddle.nn as nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| from paddle.nn.initializer import XavierUniform
 | |
| from paddle.nn.initializer import Normal
 | |
| from paddle.regularizer import L2Decay
 | |
| 
 | |
| __all__ = ['FCEFPN']
 | |
| 
 | |
| 
 | |
| class ConvNormLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  ch_in,
 | |
|                  ch_out,
 | |
|                  filter_size,
 | |
|                  stride,
 | |
|                  groups=1,
 | |
|                  norm_type='bn',
 | |
|                  norm_decay=0.,
 | |
|                  norm_groups=32,
 | |
|                  lr_scale=1.,
 | |
|                  freeze_norm=False,
 | |
|                  initializer=Normal(
 | |
|                      mean=0., std=0.01)):
 | |
|         super(ConvNormLayer, self).__init__()
 | |
|         assert norm_type in ['bn', 'sync_bn', 'gn']
 | |
| 
 | |
|         bias_attr = False
 | |
| 
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_channels=ch_in,
 | |
|             out_channels=ch_out,
 | |
|             kernel_size=filter_size,
 | |
|             stride=stride,
 | |
|             padding=(filter_size - 1) // 2,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(
 | |
|                 initializer=initializer, learning_rate=1.),
 | |
|             bias_attr=bias_attr)
 | |
| 
 | |
|         norm_lr = 0. if freeze_norm else 1.
 | |
|         param_attr = ParamAttr(
 | |
|             learning_rate=norm_lr,
 | |
|             regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
 | |
|         bias_attr = ParamAttr(
 | |
|             learning_rate=norm_lr,
 | |
|             regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
 | |
|         if norm_type == 'bn':
 | |
|             self.norm = nn.BatchNorm2D(
 | |
|                 ch_out, weight_attr=param_attr, bias_attr=bias_attr)
 | |
|         elif norm_type == 'sync_bn':
 | |
|             self.norm = nn.SyncBatchNorm(
 | |
|                 ch_out, weight_attr=param_attr, bias_attr=bias_attr)
 | |
|         elif norm_type == 'gn':
 | |
|             self.norm = nn.GroupNorm(
 | |
|                 num_groups=norm_groups,
 | |
|                 num_channels=ch_out,
 | |
|                 weight_attr=param_attr,
 | |
|                 bias_attr=bias_attr)
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         out = self.conv(inputs)
 | |
|         out = self.norm(out)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class FCEFPN(nn.Layer):
 | |
|     """
 | |
|     Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
 | |
|     Args:
 | |
|         in_channels (list[int]): input channels of each level which can be 
 | |
|             derived from the output shape of backbone by from_config
 | |
|         out_channels (list[int]): output channel of each level
 | |
|         spatial_scales (list[float]): the spatial scales between input feature
 | |
|             maps and original input image which can be derived from the output 
 | |
|             shape of backbone by from_config
 | |
|         has_extra_convs (bool): whether to add extra conv to the last level.
 | |
|             default False
 | |
|         extra_stage (int): the number of extra stages added to the last level.
 | |
|             default 1
 | |
|         use_c5 (bool): Whether to use c5 as the input of extra stage, 
 | |
|             otherwise p5 is used. default True
 | |
|         norm_type (string|None): The normalization type in FPN module. If 
 | |
|             norm_type is None, norm will not be used after conv and if 
 | |
|             norm_type is string, bn, gn, sync_bn are available. default None
 | |
|         norm_decay (float): weight decay for normalization layer weights.
 | |
|             default 0.
 | |
|         freeze_norm (bool): whether to freeze normalization layer.  
 | |
|             default False
 | |
|         relu_before_extra_convs (bool): whether to add relu before extra convs.
 | |
|             default False
 | |
|         
 | |
|     """
 | |
| 
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
 | |
|                  has_extra_convs=False,
 | |
|                  extra_stage=1,
 | |
|                  use_c5=True,
 | |
|                  norm_type=None,
 | |
|                  norm_decay=0.,
 | |
|                  freeze_norm=False,
 | |
|                  relu_before_extra_convs=True):
 | |
|         super(FCEFPN, self).__init__()
 | |
|         self.out_channels = out_channels
 | |
|         for s in range(extra_stage):
 | |
|             spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
 | |
|         self.spatial_scales = spatial_scales
 | |
|         self.has_extra_convs = has_extra_convs
 | |
|         self.extra_stage = extra_stage
 | |
|         self.use_c5 = use_c5
 | |
|         self.relu_before_extra_convs = relu_before_extra_convs
 | |
|         self.norm_type = norm_type
 | |
|         self.norm_decay = norm_decay
 | |
|         self.freeze_norm = freeze_norm
 | |
| 
 | |
|         self.lateral_convs = []
 | |
|         self.fpn_convs = []
 | |
|         fan = out_channels * 3 * 3
 | |
| 
 | |
|         # stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
 | |
|         # 0 <= st_stage < ed_stage <= 3
 | |
|         st_stage = 4 - len(in_channels)
 | |
|         ed_stage = st_stage + len(in_channels) - 1
 | |
|         for i in range(st_stage, ed_stage + 1):
 | |
|             if i == 3:
 | |
|                 lateral_name = 'fpn_inner_res5_sum'
 | |
|             else:
 | |
|                 lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
 | |
|             in_c = in_channels[i - st_stage]
 | |
|             if self.norm_type is not None:
 | |
|                 lateral = self.add_sublayer(
 | |
|                     lateral_name,
 | |
|                     ConvNormLayer(
 | |
|                         ch_in=in_c,
 | |
|                         ch_out=out_channels,
 | |
|                         filter_size=1,
 | |
|                         stride=1,
 | |
|                         norm_type=self.norm_type,
 | |
|                         norm_decay=self.norm_decay,
 | |
|                         freeze_norm=self.freeze_norm,
 | |
|                         initializer=XavierUniform(fan_out=in_c)))
 | |
|             else:
 | |
|                 lateral = self.add_sublayer(
 | |
|                     lateral_name,
 | |
|                     nn.Conv2D(
 | |
|                         in_channels=in_c,
 | |
|                         out_channels=out_channels,
 | |
|                         kernel_size=1,
 | |
|                         weight_attr=ParamAttr(
 | |
|                             initializer=XavierUniform(fan_out=in_c))))
 | |
|             self.lateral_convs.append(lateral)
 | |
| 
 | |
|         for i in range(st_stage, ed_stage + 1):
 | |
|             fpn_name = 'fpn_res{}_sum'.format(i + 2)
 | |
|             if self.norm_type is not None:
 | |
|                 fpn_conv = self.add_sublayer(
 | |
|                     fpn_name,
 | |
|                     ConvNormLayer(
 | |
|                         ch_in=out_channels,
 | |
|                         ch_out=out_channels,
 | |
|                         filter_size=3,
 | |
|                         stride=1,
 | |
|                         norm_type=self.norm_type,
 | |
|                         norm_decay=self.norm_decay,
 | |
|                         freeze_norm=self.freeze_norm,
 | |
|                         initializer=XavierUniform(fan_out=fan)))
 | |
|             else:
 | |
|                 fpn_conv = self.add_sublayer(
 | |
|                     fpn_name,
 | |
|                     nn.Conv2D(
 | |
|                         in_channels=out_channels,
 | |
|                         out_channels=out_channels,
 | |
|                         kernel_size=3,
 | |
|                         padding=1,
 | |
|                         weight_attr=ParamAttr(
 | |
|                             initializer=XavierUniform(fan_out=fan))))
 | |
|             self.fpn_convs.append(fpn_conv)
 | |
| 
 | |
|         # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
 | |
|         if self.has_extra_convs:
 | |
|             for i in range(self.extra_stage):
 | |
|                 lvl = ed_stage + 1 + i
 | |
|                 if i == 0 and self.use_c5:
 | |
|                     in_c = in_channels[-1]
 | |
|                 else:
 | |
|                     in_c = out_channels
 | |
|                 extra_fpn_name = 'fpn_{}'.format(lvl + 2)
 | |
|                 if self.norm_type is not None:
 | |
|                     extra_fpn_conv = self.add_sublayer(
 | |
|                         extra_fpn_name,
 | |
|                         ConvNormLayer(
 | |
|                             ch_in=in_c,
 | |
|                             ch_out=out_channels,
 | |
|                             filter_size=3,
 | |
|                             stride=2,
 | |
|                             norm_type=self.norm_type,
 | |
|                             norm_decay=self.norm_decay,
 | |
|                             freeze_norm=self.freeze_norm,
 | |
|                             initializer=XavierUniform(fan_out=fan)))
 | |
|                 else:
 | |
|                     extra_fpn_conv = self.add_sublayer(
 | |
|                         extra_fpn_name,
 | |
|                         nn.Conv2D(
 | |
|                             in_channels=in_c,
 | |
|                             out_channels=out_channels,
 | |
|                             kernel_size=3,
 | |
|                             stride=2,
 | |
|                             padding=1,
 | |
|                             weight_attr=ParamAttr(
 | |
|                                 initializer=XavierUniform(fan_out=fan))))
 | |
|                 self.fpn_convs.append(extra_fpn_conv)
 | |
| 
 | |
|     @classmethod
 | |
|     def from_config(cls, cfg, input_shape):
 | |
|         return {
 | |
|             'in_channels': [i.channels for i in input_shape],
 | |
|             'spatial_scales': [1.0 / i.stride for i in input_shape],
 | |
|         }
 | |
| 
 | |
|     def forward(self, body_feats):
 | |
|         laterals = []
 | |
|         num_levels = len(body_feats)
 | |
| 
 | |
|         for i in range(num_levels):
 | |
|             laterals.append(self.lateral_convs[i](body_feats[i]))
 | |
| 
 | |
|         for i in range(1, num_levels):
 | |
|             lvl = num_levels - i
 | |
|             upsample = F.interpolate(
 | |
|                 laterals[lvl],
 | |
|                 scale_factor=2.,
 | |
|                 mode='nearest', )
 | |
|             laterals[lvl - 1] += upsample
 | |
| 
 | |
|         fpn_output = []
 | |
|         for lvl in range(num_levels):
 | |
|             fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
 | |
| 
 | |
|         if self.extra_stage > 0:
 | |
|             # use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
 | |
|             if not self.has_extra_convs:
 | |
|                 assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
 | |
|                 fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
 | |
|             # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
 | |
|             else:
 | |
|                 if self.use_c5:
 | |
|                     extra_source = body_feats[-1]
 | |
|                 else:
 | |
|                     extra_source = fpn_output[-1]
 | |
|                 fpn_output.append(self.fpn_convs[num_levels](extra_source))
 | |
| 
 | |
|                 for i in range(1, self.extra_stage):
 | |
|                     if self.relu_before_extra_convs:
 | |
|                         fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
 | |
|                             fpn_output[-1])))
 | |
|                     else:
 | |
|                         fpn_output.append(self.fpn_convs[num_levels + i](
 | |
|                             fpn_output[-1]))
 | |
|         return fpn_output
 | 
