mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			98 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| This code is refer from:
 | |
| https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py
 | |
| """
 | |
| 
 | |
| import paddle
 | |
| import paddle.nn as nn
 | |
| import paddle.nn.functional as F
 | |
| 
 | |
| 
 | |
| class UpBlock(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channels):
 | |
|         super().__init__()
 | |
| 
 | |
|         assert isinstance(in_channels, int)
 | |
|         assert isinstance(out_channels, int)
 | |
| 
 | |
|         self.conv1x1 = nn.Conv2D(
 | |
|             in_channels, in_channels, kernel_size=1, stride=1, padding=0)
 | |
|         self.conv3x3 = nn.Conv2D(
 | |
|             in_channels, out_channels, kernel_size=3, stride=1, padding=1)
 | |
|         self.deconv = nn.Conv2DTranspose(
 | |
|             out_channels, out_channels, kernel_size=4, stride=2, padding=1)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = F.relu(self.conv1x1(x))
 | |
|         x = F.relu(self.conv3x3(x))
 | |
|         x = self.deconv(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class FPN_UNet(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channels):
 | |
|         super().__init__()
 | |
| 
 | |
|         assert len(in_channels) == 4
 | |
|         assert isinstance(out_channels, int)
 | |
|         self.out_channels = out_channels
 | |
| 
 | |
|         blocks_out_channels = [out_channels] + [
 | |
|             min(out_channels * 2**i, 256) for i in range(4)
 | |
|         ]
 | |
|         blocks_in_channels = [blocks_out_channels[1]] + [
 | |
|             in_channels[i] + blocks_out_channels[i + 2] for i in range(3)
 | |
|         ] + [in_channels[3]]
 | |
| 
 | |
|         self.up4 = nn.Conv2DTranspose(
 | |
|             blocks_in_channels[4],
 | |
|             blocks_out_channels[4],
 | |
|             kernel_size=4,
 | |
|             stride=2,
 | |
|             padding=1)
 | |
|         self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3])
 | |
|         self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2])
 | |
|         self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1])
 | |
|         self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """
 | |
|         Args:
 | |
|             x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape
 | |
|                 :math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5
 | |
|                 features respectively. :math:`C_i` should matches the number in
 | |
|                 ``in_channels``.
 | |
| 
 | |
|         Returns:
 | |
|             Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and
 | |
|             :math:`W=4W_0`.
 | |
|         """
 | |
|         c2, c3, c4, c5 = x
 | |
| 
 | |
|         x = F.relu(self.up4(c5))
 | |
| 
 | |
|         x = paddle.concat([x, c4], axis=1)
 | |
|         x = F.relu(self.up_block3(x))
 | |
| 
 | |
|         x = paddle.concat([x, c3], axis=1)
 | |
|         x = F.relu(self.up_block2(x))
 | |
| 
 | |
|         x = paddle.concat([x, c2], axis=1)
 | |
|         x = F.relu(self.up_block1(x))
 | |
| 
 | |
|         x = self.up_block0(x)
 | |
|         return x
 | 
