mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import math
 | |
| import paddle
 | |
| from paddle import nn, ParamAttr
 | |
| from paddle.nn import functional as F
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class ConvBNLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  kernel_size,
 | |
|                  stride=1,
 | |
|                  groups=1,
 | |
|                  act=None,
 | |
|                  name=None):
 | |
|         super(ConvBNLayer, self).__init__()
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=(kernel_size - 1) // 2,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + "_weights"),
 | |
|             bias_attr=False)
 | |
|         bn_name = "bn_" + name
 | |
|         self.bn = nn.BatchNorm(
 | |
|             out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name=bn_name + '_scale'),
 | |
|             bias_attr=ParamAttr(bn_name + '_offset'),
 | |
|             moving_mean_name=bn_name + '_mean',
 | |
|             moving_variance_name=bn_name + '_variance')
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv(x)
 | |
|         x = self.bn(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class LocalizationNetwork(nn.Layer):
 | |
|     def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
 | |
|         super(LocalizationNetwork, self).__init__()
 | |
|         self.F = num_fiducial
 | |
|         F = num_fiducial
 | |
|         if model_name == "large":
 | |
|             num_filters_list = [64, 128, 256, 512]
 | |
|             fc_dim = 256
 | |
|         else:
 | |
|             num_filters_list = [16, 32, 64, 128]
 | |
|             fc_dim = 64
 | |
| 
 | |
|         self.block_list = []
 | |
|         for fno in range(0, len(num_filters_list)):
 | |
|             num_filters = num_filters_list[fno]
 | |
|             name = "loc_conv%d" % fno
 | |
|             conv = self.add_sublayer(
 | |
|                 name,
 | |
|                 ConvBNLayer(
 | |
|                     in_channels=in_channels,
 | |
|                     out_channels=num_filters,
 | |
|                     kernel_size=3,
 | |
|                     act='relu',
 | |
|                     name=name))
 | |
|             self.block_list.append(conv)
 | |
|             if fno == len(num_filters_list) - 1:
 | |
|                 pool = nn.AdaptiveAvgPool2D(1)
 | |
|             else:
 | |
|                 pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
 | |
|             in_channels = num_filters
 | |
|             self.block_list.append(pool)
 | |
|         name = "loc_fc1"
 | |
|         stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
 | |
|         self.fc1 = nn.Linear(
 | |
|             in_channels,
 | |
|             fc_dim,
 | |
|             weight_attr=ParamAttr(
 | |
|                 learning_rate=loc_lr,
 | |
|                 name=name + "_w",
 | |
|                 initializer=nn.initializer.Uniform(-stdv, stdv)),
 | |
|             bias_attr=ParamAttr(name=name + '.b_0'),
 | |
|             name=name)
 | |
| 
 | |
|         # Init fc2 in LocalizationNetwork
 | |
|         initial_bias = self.get_initial_fiducials()
 | |
|         initial_bias = initial_bias.reshape(-1)
 | |
|         name = "loc_fc2"
 | |
|         param_attr = ParamAttr(
 | |
|             learning_rate=loc_lr,
 | |
|             initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
 | |
|             name=name + "_w")
 | |
|         bias_attr = ParamAttr(
 | |
|             learning_rate=loc_lr,
 | |
|             initializer=nn.initializer.Assign(initial_bias),
 | |
|             name=name + "_b")
 | |
|         self.fc2 = nn.Linear(
 | |
|             fc_dim,
 | |
|             F * 2,
 | |
|             weight_attr=param_attr,
 | |
|             bias_attr=bias_attr,
 | |
|             name=name)
 | |
|         self.out_channels = F * 2
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """
 | |
|            Estimating parameters of geometric transformation
 | |
|            Args:
 | |
|                image: input
 | |
|            Return:
 | |
|                batch_C_prime: the matrix of the geometric transformation
 | |
|         """
 | |
|         B = x.shape[0]
 | |
|         i = 0
 | |
|         for block in self.block_list:
 | |
|             x = block(x)
 | |
|         x = x.squeeze(axis=2).squeeze(axis=2)
 | |
|         x = self.fc1(x)
 | |
| 
 | |
|         x = F.relu(x)
 | |
|         x = self.fc2(x)
 | |
|         x = x.reshape(shape=[-1, self.F, 2])
 | |
|         return x
 | |
| 
 | |
|     def get_initial_fiducials(self):
 | |
|         """ see RARE paper Fig. 6 (a) """
 | |
|         F = self.F
 | |
|         ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
 | |
|         ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
 | |
|         ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
 | |
|         ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
 | |
|         ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
 | |
|         initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
 | |
|         return initial_bias
 | |
| 
 | |
| 
 | |
| class GridGenerator(nn.Layer):
 | |
|     def __init__(self, in_channels, num_fiducial):
 | |
|         super(GridGenerator, self).__init__()
 | |
|         self.eps = 1e-6
 | |
|         self.F = num_fiducial
 | |
| 
 | |
|         name = "ex_fc"
 | |
|         initializer = nn.initializer.Constant(value=0.0)
 | |
|         param_attr = ParamAttr(
 | |
|             learning_rate=0.0, initializer=initializer, name=name + "_w")
 | |
|         bias_attr = ParamAttr(
 | |
|             learning_rate=0.0, initializer=initializer, name=name + "_b")
 | |
|         self.fc = nn.Linear(
 | |
|             in_channels,
 | |
|             6,
 | |
|             weight_attr=param_attr,
 | |
|             bias_attr=bias_attr,
 | |
|             name=name)
 | |
| 
 | |
|     def forward(self, batch_C_prime, I_r_size):
 | |
|         """
 | |
|         Generate the grid for the grid_sampler.
 | |
|         Args:
 | |
|             batch_C_prime: the matrix of the geometric transformation
 | |
|             I_r_size: the shape of the input image
 | |
|         Return:
 | |
|             batch_P_prime: the grid for the grid_sampler
 | |
|         """
 | |
|         C = self.build_C_paddle()
 | |
|         P = self.build_P_paddle(I_r_size)
 | |
| 
 | |
|         inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
 | |
|         P_hat_tensor = self.build_P_hat_paddle(
 | |
|             C, paddle.to_tensor(P)).astype('float32')
 | |
| 
 | |
|         inv_delta_C_tensor.stop_gradient = True
 | |
|         P_hat_tensor.stop_gradient = True
 | |
| 
 | |
|         batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
 | |
| 
 | |
|         batch_C_ex_part_tensor.stop_gradient = True
 | |
| 
 | |
|         batch_C_prime_with_zeros = paddle.concat(
 | |
|             [batch_C_prime, batch_C_ex_part_tensor], axis=1)
 | |
|         batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
 | |
|         batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
 | |
|         return batch_P_prime
 | |
| 
 | |
|     def build_C_paddle(self):
 | |
|         """ Return coordinates of fiducial points in I_r; C """
 | |
|         F = self.F
 | |
|         ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
 | |
|         ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
 | |
|         ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
 | |
|         ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
 | |
|         ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
 | |
|         C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
 | |
|         return C  # F x 2
 | |
| 
 | |
|     def build_P_paddle(self, I_r_size):
 | |
|         I_r_height, I_r_width = I_r_size
 | |
|         I_r_grid_x = (paddle.arange(
 | |
|             -I_r_width, I_r_width, 2, dtype='float64') + 1.0
 | |
|                       ) / paddle.to_tensor(np.array([I_r_width]))
 | |
| 
 | |
|         I_r_grid_y = (paddle.arange(
 | |
|             -I_r_height, I_r_height, 2, dtype='float64') + 1.0
 | |
|                       ) / paddle.to_tensor(np.array([I_r_height]))
 | |
| 
 | |
|         # P: self.I_r_width x self.I_r_height x 2
 | |
|         P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
 | |
|         P = paddle.transpose(P, perm=[1, 0, 2])
 | |
|         # n (= self.I_r_width x self.I_r_height) x 2
 | |
|         return P.reshape([-1, 2])
 | |
| 
 | |
|     def build_inv_delta_C_paddle(self, C):
 | |
|         """ Return inv_delta_C which is needed to calculate T """
 | |
|         F = self.F
 | |
|         hat_C = paddle.zeros((F, F), dtype='float64')  # F x F
 | |
|         for i in range(0, F):
 | |
|             for j in range(i, F):
 | |
|                 if i == j:
 | |
|                     hat_C[i, j] = 1
 | |
|                 else:
 | |
|                     r = paddle.norm(C[i] - C[j])
 | |
|                     hat_C[i, j] = r
 | |
|                     hat_C[j, i] = r
 | |
|         hat_C = (hat_C**2) * paddle.log(hat_C)
 | |
|         delta_C = paddle.concat(  # F+3 x F+3
 | |
|             [
 | |
|                 paddle.concat(
 | |
|                     [paddle.ones(
 | |
|                         (F, 1), dtype='float64'), C, hat_C], axis=1),  # F x F+3
 | |
|                 paddle.concat(
 | |
|                     [
 | |
|                         paddle.zeros(
 | |
|                             (2, 3), dtype='float64'), paddle.transpose(
 | |
|                                 C, perm=[1, 0])
 | |
|                     ],
 | |
|                     axis=1),  # 2 x F+3
 | |
|                 paddle.concat(
 | |
|                     [
 | |
|                         paddle.zeros(
 | |
|                             (1, 3), dtype='float64'), paddle.ones(
 | |
|                                 (1, F), dtype='float64')
 | |
|                     ],
 | |
|                     axis=1)  # 1 x F+3
 | |
|             ],
 | |
|             axis=0)
 | |
|         inv_delta_C = paddle.inverse(delta_C)
 | |
|         return inv_delta_C  # F+3 x F+3
 | |
| 
 | |
|     def build_P_hat_paddle(self, C, P):
 | |
|         F = self.F
 | |
|         eps = self.eps
 | |
|         n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
 | |
|         # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
 | |
|         P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
 | |
|         C_tile = paddle.unsqueeze(C, axis=0)  # 1 x F x 2
 | |
|         P_diff = P_tile - C_tile  # n x F x 2
 | |
|         # rbf_norm: n x F
 | |
|         rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)
 | |
| 
 | |
|         # rbf: n x F
 | |
|         rbf = paddle.multiply(
 | |
|             paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
 | |
|         P_hat = paddle.concat(
 | |
|             [paddle.ones(
 | |
|                 (n, 1), dtype='float64'), P, rbf], axis=1)
 | |
|         return P_hat  # n x F+3
 | |
| 
 | |
|     def get_expand_tensor(self, batch_C_prime):
 | |
|         B, H, C = batch_C_prime.shape
 | |
|         batch_C_prime = batch_C_prime.reshape([B, H * C])
 | |
|         batch_C_ex_part_tensor = self.fc(batch_C_prime)
 | |
|         batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
 | |
|         return batch_C_ex_part_tensor
 | |
| 
 | |
| 
 | |
| class TPS(nn.Layer):
 | |
|     def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
 | |
|         super(TPS, self).__init__()
 | |
|         self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
 | |
|                                            model_name)
 | |
|         self.grid_generator = GridGenerator(self.loc_net.out_channels,
 | |
|                                             num_fiducial)
 | |
|         self.out_channels = in_channels
 | |
| 
 | |
|     def forward(self, image):
 | |
|         image.stop_gradient = False
 | |
|         batch_C_prime = self.loc_net(image)
 | |
|         batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
 | |
|         batch_P_prime = batch_P_prime.reshape(
 | |
|             [-1, image.shape[2], image.shape[3], 2])
 | |
|         batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
 | |
|         return batch_I_r
 | 
