mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			96 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| #Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #you may not use this file except in compliance with the License.
 | |
| #You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #Unless required by applicable law or agreed to in writing, software
 | |
| #distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #See the License for the specific language governing permissions and
 | |
| #limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| import paddle.fluid as fluid
 | |
| from paddle.fluid.param_attr import ParamAttr
 | |
| import math
 | |
| 
 | |
| 
 | |
| def get_para_bias_attr(l2_decay, k, name):
 | |
|     regularizer = fluid.regularizer.L2Decay(l2_decay)
 | |
|     stdv = 1.0 / math.sqrt(k * 1.0)
 | |
|     initializer = fluid.initializer.Uniform(-stdv, stdv)
 | |
|     para_attr = fluid.ParamAttr(
 | |
|         regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
 | |
|     bias_attr = fluid.ParamAttr(
 | |
|         regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
 | |
|     return [para_attr, bias_attr]
 | |
| 
 | |
| 
 | |
| def conv_bn_layer(input,
 | |
|                   num_filters,
 | |
|                   filter_size,
 | |
|                   stride=1,
 | |
|                   groups=1,
 | |
|                   act=None,
 | |
|                   name=None):
 | |
|     conv = fluid.layers.conv2d(
 | |
|         input=input,
 | |
|         num_filters=num_filters,
 | |
|         filter_size=filter_size,
 | |
|         stride=stride,
 | |
|         padding=(filter_size - 1) // 2,
 | |
|         groups=groups,
 | |
|         act=None,
 | |
|         param_attr=ParamAttr(name=name + "_weights"),
 | |
|         bias_attr=False,
 | |
|         name=name + '.conv2d')
 | |
| 
 | |
|     bn_name = "bn_" + name
 | |
|     return fluid.layers.batch_norm(
 | |
|         input=conv,
 | |
|         act=act,
 | |
|         name=bn_name + '.output',
 | |
|         param_attr=ParamAttr(name=bn_name + '_scale'),
 | |
|         bias_attr=ParamAttr(bn_name + '_offset'),
 | |
|         moving_mean_name=bn_name + '_mean',
 | |
|         moving_variance_name=bn_name + '_variance')
 | |
| 
 | |
| 
 | |
| def deconv_bn_layer(input,
 | |
|                     num_filters,
 | |
|                     filter_size=4,
 | |
|                     stride=2,
 | |
|                     act='relu',
 | |
|                     name=None):
 | |
|     deconv = fluid.layers.conv2d_transpose(
 | |
|         input=input,
 | |
|         num_filters=num_filters,
 | |
|         filter_size=filter_size,
 | |
|         stride=stride,
 | |
|         padding=1,
 | |
|         act=None,
 | |
|         param_attr=ParamAttr(name=name + "_weights"),
 | |
|         bias_attr=False,
 | |
|         name=name + '.deconv2d')
 | |
|     bn_name = "bn_" + name
 | |
|     return fluid.layers.batch_norm(
 | |
|         input=deconv,
 | |
|         act=act,
 | |
|         name=bn_name + '.output',
 | |
|         param_attr=ParamAttr(name=bn_name + '_scale'),
 | |
|         bias_attr=ParamAttr(bn_name + '_offset'),
 | |
|         moving_mean_name=bn_name + '_mean',
 | |
|         moving_variance_name=bn_name + '_variance')
 | |
| 
 | |
| 
 | |
| def create_tmp_var(program, name, dtype, shape, lod_level=0):
 | |
|     return program.current_block().create_var(
 | |
|         name=name, dtype=dtype, shape=shape, lod_level=lod_level)
 | 
