mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| #Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #you may not use this file except in compliance with the License.
 | |
| #You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #Unless required by applicable law or agreed to in writing, software
 | |
| #distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #See the License for the specific language governing permissions and
 | |
| #limitations under the License.
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| import paddle.fluid as fluid
 | |
| from paddle.fluid.regularizer import L2Decay
 | |
| 
 | |
| from ppocr.utils.utility import initial_logger
 | |
| 
 | |
| logger = initial_logger()
 | |
| 
 | |
| 
 | |
| def AdamDecay(params, parameter_list=None):
 | |
|     """
 | |
|     define optimizer function
 | |
|     args:
 | |
|         params(dict): the super parameters
 | |
|         parameter_list (list): list of Variable names to update to minimize loss
 | |
|     return:
 | |
|     """
 | |
|     base_lr = params['base_lr']
 | |
|     beta1 = params['beta1']
 | |
|     beta2 = params['beta2']
 | |
|     l2_decay = params.get("l2_decay", 0.0)
 | |
| 
 | |
|     if 'decay' in params:
 | |
|         params = params['decay']
 | |
|         decay_mode = params['function']
 | |
|         step_each_epoch = params['step_each_epoch']
 | |
|         total_epoch = params['total_epoch']
 | |
|         if decay_mode == "cosine_decay":
 | |
|             base_lr = fluid.layers.cosine_decay(
 | |
|                 learning_rate=base_lr,
 | |
|                 step_each_epoch=step_each_epoch,
 | |
|                 epochs=total_epoch)
 | |
|         else:
 | |
|             logger.info("Only support Cosine decay currently")
 | |
|     optimizer = fluid.optimizer.Adam(
 | |
|         learning_rate=base_lr,
 | |
|         beta1=beta1,
 | |
|         beta2=beta2,
 | |
|         regularization=L2Decay(regularization_coeff=l2_decay),
 | |
|         parameter_list=parameter_list)
 | |
|     return optimizer
 | 
