mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			153 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| import subprocess
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | |
| import cv2
 | |
| import numpy as np
 | |
| import time
 | |
| import logging
 | |
| 
 | |
| from ppocr.utils.utility import get_image_file_list, check_and_read_gif
 | |
| from ppocr.utils.logging import get_logger
 | |
| from tools.infer.predict_system import TextSystem
 | |
| from ppstructure.table.predict_table import TableSystem, to_excel
 | |
| from ppstructure.utility import parse_args, draw_structure_result
 | |
| 
 | |
| logger = get_logger()
 | |
| 
 | |
| 
 | |
| class OCRSystem(object):
 | |
|     def __init__(self, args):
 | |
|         import layoutparser as lp
 | |
|         # args.det_limit_type = 'resize_long'
 | |
|         args.drop_score = 0
 | |
|         if not args.show_log:
 | |
|             logger.setLevel(logging.INFO)
 | |
|         self.text_system = TextSystem(args)
 | |
|         self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer)
 | |
| 
 | |
|         config_path = None
 | |
|         model_path = None
 | |
|         if os.path.isdir(args.layout_path_model):
 | |
|             model_path = args.layout_path_model
 | |
|         else:
 | |
|             config_path = args.layout_path_model
 | |
|         self.table_layout = lp.PaddleDetectionLayoutModel(config_path=config_path,
 | |
|                                                           model_path=model_path,
 | |
|                                                           threshold=0.5, enable_mkldnn=args.enable_mkldnn,
 | |
|                                                           enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads)
 | |
|         self.use_angle_cls = args.use_angle_cls
 | |
|         self.drop_score = args.drop_score
 | |
| 
 | |
|     def __call__(self, img):
 | |
|         ori_im = img.copy()
 | |
|         layout_res = self.table_layout.detect(img[..., ::-1])
 | |
|         res_list = []
 | |
|         for region in layout_res:
 | |
|             x1, y1, x2, y2 = region.coordinates
 | |
|             x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
 | |
|             roi_img = ori_im[y1:y2, x1:x2, :]
 | |
|             if region.type == 'Table':
 | |
|                 res = self.table_system(roi_img)
 | |
|             else:
 | |
|                 filter_boxes, filter_rec_res = self.text_system(roi_img)
 | |
|                 filter_boxes = [x + [x1, y1] for x in filter_boxes]
 | |
|                 filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes]
 | |
|                 # remove style char
 | |
|                 style_token = ['<strike>', '<strike>', '<sup>', '</sub>', '<b>', '</b>', '<sub>', '</sup>',
 | |
|                                '<overline>', '</overline>', '<underline>', '</underline>', '<i>', '</i>']
 | |
|                 filter_rec_res_tmp = []
 | |
|                 for rec_res in filter_rec_res:
 | |
|                     rec_str, rec_conf = rec_res
 | |
|                     for token in style_token:
 | |
|                         if token in rec_str:
 | |
|                             rec_str = rec_str.replace(token, '')
 | |
|                     filter_rec_res_tmp.append((rec_str, rec_conf))
 | |
|                 res = (filter_boxes, filter_rec_res_tmp)
 | |
|             res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'img': roi_img, 'res': res})
 | |
|         return res_list
 | |
| 
 | |
| 
 | |
| def save_structure_res(res, save_folder, img_name):
 | |
|     excel_save_folder = os.path.join(save_folder, img_name)
 | |
|     os.makedirs(excel_save_folder, exist_ok=True)
 | |
|     # save res
 | |
|     with open(os.path.join(excel_save_folder, 'res.txt'), 'w', encoding='utf8') as f:
 | |
|         for region in res:
 | |
|             if region['type'] == 'Table':
 | |
|                 excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox']))
 | |
|                 to_excel(region['res'], excel_path)
 | |
|             if region['type'] == 'Figure':
 | |
|                 roi_img = region['img']
 | |
|                 img_path = os.path.join(excel_save_folder, '{}.jpg'.format(region['bbox']))
 | |
|                 cv2.imwrite(img_path, roi_img)
 | |
|             else:
 | |
|                 for box, rec_res in zip(region['res'][0], region['res'][1]):
 | |
|                     f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res))
 | |
| 
 | |
| 
 | |
| def main(args):
 | |
|     image_file_list = get_image_file_list(args.image_dir)
 | |
|     image_file_list = image_file_list
 | |
|     image_file_list = image_file_list[args.process_id::args.total_process_num]
 | |
|     save_folder = args.output
 | |
|     os.makedirs(save_folder, exist_ok=True)
 | |
| 
 | |
|     structure_sys = OCRSystem(args)
 | |
|     img_num = len(image_file_list)
 | |
|     for i, image_file in enumerate(image_file_list):
 | |
|         logger.info("[{}/{}] {}".format(i, img_num, image_file))
 | |
|         img, flag = check_and_read_gif(image_file)
 | |
|         img_name = os.path.basename(image_file).split('.')[0]
 | |
| 
 | |
|         if not flag:
 | |
|             img = cv2.imread(image_file)
 | |
|         if img is None:
 | |
|             logger.error("error in loading image:{}".format(image_file))
 | |
|             continue
 | |
|         starttime = time.time()
 | |
|         res = structure_sys(img)
 | |
|         save_structure_res(res, save_folder, img_name)
 | |
|         draw_img = draw_structure_result(img, res, args.vis_font_path)
 | |
|         cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img)
 | |
|         logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
 | |
|         elapse = time.time() - starttime
 | |
|         logger.info("Predict time : {:.3f}s".format(elapse))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     args = parse_args()
 | |
|     if args.use_mp:
 | |
|         p_list = []
 | |
|         total_process_num = args.total_process_num
 | |
|         for process_id in range(total_process_num):
 | |
|             cmd = [sys.executable, "-u"] + sys.argv + [
 | |
|                 "--process_id={}".format(process_id),
 | |
|                 "--use_mp={}".format(False)
 | |
|             ]
 | |
|             p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
 | |
|             p_list.append(p)
 | |
|         for p in p_list:
 | |
|             p.wait()
 | |
|     else:
 | |
|         main(args)
 | 
