mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
import os
 | 
						|
import sys
 | 
						|
 | 
						|
__dir__ = os.path.dirname(os.path.abspath(__file__))
 | 
						|
sys.path.append(__dir__)
 | 
						|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
 | 
						|
 | 
						|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | 
						|
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import time
 | 
						|
 | 
						|
import tools.infer.utility as utility
 | 
						|
from ppocr.data import create_operators, transform
 | 
						|
from ppocr.postprocess import build_post_process
 | 
						|
from ppocr.utils.logging import get_logger
 | 
						|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
 | 
						|
from ppstructure.utility import parse_args
 | 
						|
 | 
						|
logger = get_logger()
 | 
						|
 | 
						|
 | 
						|
class TableStructurer(object):
 | 
						|
    def __init__(self, args):
 | 
						|
        pre_process_list = [{
 | 
						|
            'ResizeTableImage': {
 | 
						|
                'max_len': args.table_max_len
 | 
						|
            }
 | 
						|
        }, {
 | 
						|
            'NormalizeImage': {
 | 
						|
                'std': [0.229, 0.224, 0.225],
 | 
						|
                'mean': [0.485, 0.456, 0.406],
 | 
						|
                'scale': '1./255.',
 | 
						|
                'order': 'hwc'
 | 
						|
            }
 | 
						|
        }, {
 | 
						|
            'PaddingTableImage': None
 | 
						|
        }, {
 | 
						|
            'ToCHWImage': None
 | 
						|
        }, {
 | 
						|
            'KeepKeys': {
 | 
						|
                'keep_keys': ['image']
 | 
						|
            }
 | 
						|
        }]
 | 
						|
        postprocess_params = {
 | 
						|
            'name': 'TableLabelDecode',
 | 
						|
            "character_type": args.table_char_type,
 | 
						|
            "character_dict_path": args.table_char_dict_path,
 | 
						|
        }
 | 
						|
 | 
						|
        self.preprocess_op = create_operators(pre_process_list)
 | 
						|
        self.postprocess_op = build_post_process(postprocess_params)
 | 
						|
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
 | 
						|
            utility.create_predictor(args, 'table', logger)
 | 
						|
 | 
						|
    def __call__(self, img):
 | 
						|
        ori_im = img.copy()
 | 
						|
        data = {'image': img}
 | 
						|
        data = transform(data, self.preprocess_op)
 | 
						|
        img = data[0]
 | 
						|
        if img is None:
 | 
						|
            return None, 0
 | 
						|
        img = np.expand_dims(img, axis=0)
 | 
						|
        img = img.copy()
 | 
						|
        starttime = time.time()
 | 
						|
 | 
						|
        self.input_tensor.copy_from_cpu(img)
 | 
						|
        self.predictor.run()
 | 
						|
        outputs = []
 | 
						|
        for output_tensor in self.output_tensors:
 | 
						|
            output = output_tensor.copy_to_cpu()
 | 
						|
            outputs.append(output)
 | 
						|
 | 
						|
        preds = {}
 | 
						|
        preds['structure_probs'] = outputs[1]
 | 
						|
        preds['loc_preds'] = outputs[0]
 | 
						|
 | 
						|
        post_result = self.postprocess_op(preds)
 | 
						|
 | 
						|
        structure_str_list = post_result['structure_str_list']
 | 
						|
        res_loc = post_result['res_loc']
 | 
						|
        imgh, imgw = ori_im.shape[0:2]
 | 
						|
        res_loc_final = []
 | 
						|
        for rno in range(len(res_loc[0])):
 | 
						|
            x0, y0, x1, y1 = res_loc[0][rno]
 | 
						|
            left = max(int(imgw * x0), 0)
 | 
						|
            top = max(int(imgh * y0), 0)
 | 
						|
            right = min(int(imgw * x1), imgw - 1)
 | 
						|
            bottom = min(int(imgh * y1), imgh - 1)
 | 
						|
            res_loc_final.append([left, top, right, bottom])
 | 
						|
 | 
						|
        structure_str_list = structure_str_list[0][:-1]
 | 
						|
        structure_str_list = ['<html>', '<body>', '<table>'] + structure_str_list + ['</table>', '</body>', '</html>']
 | 
						|
 | 
						|
        elapse = time.time() - starttime
 | 
						|
        return (structure_str_list, res_loc_final), elapse
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    image_file_list = get_image_file_list(args.image_dir)
 | 
						|
    table_structurer = TableStructurer(args)
 | 
						|
    count = 0
 | 
						|
    total_time = 0
 | 
						|
    for image_file in image_file_list:
 | 
						|
        img, flag = check_and_read_gif(image_file)
 | 
						|
        if not flag:
 | 
						|
            img = cv2.imread(image_file)
 | 
						|
        if img is None:
 | 
						|
            logger.info("error in loading image:{}".format(image_file))
 | 
						|
            continue
 | 
						|
        structure_res, elapse = table_structurer(img)
 | 
						|
 | 
						|
        logger.info("result: {}".format(structure_res))
 | 
						|
 | 
						|
        if count > 0:
 | 
						|
            total_time += elapse
 | 
						|
        count += 1
 | 
						|
        logger.info("Predict time of {}: {}".format(image_file, elapse))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main(parse_args())
 |