mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 11:49:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			334 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
 | 
						||
import os
 | 
						||
import sys
 | 
						||
 | 
						||
__dir__ = os.path.dirname(__file__)
 | 
						||
sys.path.append(os.path.join(__dir__, ''))
 | 
						||
 | 
						||
import cv2
 | 
						||
import numpy as np
 | 
						||
from pathlib import Path
 | 
						||
import tarfile
 | 
						||
import requests
 | 
						||
from tqdm import tqdm
 | 
						||
 | 
						||
from tools.infer import predict_system
 | 
						||
from ppocr.utils.logging import get_logger
 | 
						||
 | 
						||
logger = get_logger()
 | 
						||
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
 | 
						||
 | 
						||
__all__ = ['PaddleOCR']
 | 
						||
 | 
						||
model_urls = {
 | 
						||
    'det':
 | 
						||
        'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
 | 
						||
    'rec': {
 | 
						||
        'ch': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
 | 
						||
        },
 | 
						||
        'en': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/ic15_dict.txt'
 | 
						||
        },
 | 
						||
        'french': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/dict/french_dict.txt'
 | 
						||
        },
 | 
						||
        'german': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/dict/german_dict.txt'
 | 
						||
        },
 | 
						||
        'korean': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/dict/korean_dict.txt'
 | 
						||
        },
 | 
						||
        'japan': {
 | 
						||
            'url':
 | 
						||
                'https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar',
 | 
						||
            'dict_path': './ppocr/utils/dict/japan_dict.txt'
 | 
						||
        }
 | 
						||
    },
 | 
						||
    'cls':
 | 
						||
        'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
 | 
						||
}
 | 
						||
 | 
						||
SUPPORT_DET_MODEL = ['DB']
 | 
						||
SUPPORT_REC_MODEL = ['CRNN']
 | 
						||
BASE_DIR = os.path.expanduser("~/.paddleocr/")
 | 
						||
 | 
						||
 | 
						||
def download_with_progressbar(url, save_path):
 | 
						||
    response = requests.get(url, stream=True)
 | 
						||
    total_size_in_bytes = int(response.headers.get('content-length', 0))
 | 
						||
    block_size = 1024  # 1 Kibibyte
 | 
						||
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
 | 
						||
    with open(save_path, 'wb') as file:
 | 
						||
        for data in response.iter_content(block_size):
 | 
						||
            progress_bar.update(len(data))
 | 
						||
            file.write(data)
 | 
						||
    progress_bar.close()
 | 
						||
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
 | 
						||
        logger.error("Something went wrong while downloading models")
 | 
						||
        sys.exit(0)
 | 
						||
 | 
						||
 | 
						||
def maybe_download(model_storage_directory, url):
 | 
						||
    # using custom model
 | 
						||
    if not os.path.exists(os.path.join(
 | 
						||
            model_storage_directory, 'model')) or not os.path.exists(
 | 
						||
        os.path.join(model_storage_directory, 'params')):
 | 
						||
        tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
 | 
						||
        print('download {} to {}'.format(url, tmp_path))
 | 
						||
        os.makedirs(model_storage_directory, exist_ok=True)
 | 
						||
        download_with_progressbar(url, tmp_path)
 | 
						||
        with tarfile.open(tmp_path, 'r') as tarObj:
 | 
						||
            for member in tarObj.getmembers():
 | 
						||
                if "model" in member.name:
 | 
						||
                    filename = 'model'
 | 
						||
                elif "params" in member.name:
 | 
						||
                    filename = 'params'
 | 
						||
                else:
 | 
						||
                    continue
 | 
						||
                file = tarObj.extractfile(member)
 | 
						||
                with open(
 | 
						||
                        os.path.join(model_storage_directory, filename),
 | 
						||
                        'wb') as f:
 | 
						||
                    f.write(file.read())
 | 
						||
        os.remove(tmp_path)
 | 
						||
 | 
						||
 | 
						||
def parse_args(mMain=True, add_help=True):
 | 
						||
    import argparse
 | 
						||
 | 
						||
    def str2bool(v):
 | 
						||
        return v.lower() in ("true", "t", "1")
 | 
						||
 | 
						||
    if mMain:
 | 
						||
        parser = argparse.ArgumentParser(add_help=add_help)
 | 
						||
        # params for prediction engine
 | 
						||
        parser.add_argument("--use_gpu", type=str2bool, default=True)
 | 
						||
        parser.add_argument("--ir_optim", type=str2bool, default=True)
 | 
						||
        parser.add_argument("--use_tensorrt", type=str2bool, default=False)
 | 
						||
        parser.add_argument("--gpu_mem", type=int, default=8000)
 | 
						||
 | 
						||
        # params for text detector
 | 
						||
        parser.add_argument("--image_dir", type=str)
 | 
						||
        parser.add_argument("--det_algorithm", type=str, default='DB')
 | 
						||
        parser.add_argument("--det_model_dir", type=str, default=None)
 | 
						||
        parser.add_argument("--det_limit_side_len", type=float, default=960)
 | 
						||
        parser.add_argument("--det_limit_type", type=str, default='max')
 | 
						||
 | 
						||
        # DB parmas
 | 
						||
        parser.add_argument("--det_db_thresh", type=float, default=0.3)
 | 
						||
        parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
 | 
						||
        parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
 | 
						||
 | 
						||
        # EAST parmas
 | 
						||
        parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
 | 
						||
        parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
 | 
						||
        parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
 | 
						||
 | 
						||
        # params for text recognizer
 | 
						||
        parser.add_argument("--rec_algorithm", type=str, default='CRNN')
 | 
						||
        parser.add_argument("--rec_model_dir", type=str, default=None)
 | 
						||
        parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
 | 
						||
        parser.add_argument("--rec_char_type", type=str, default='ch')
 | 
						||
        parser.add_argument("--rec_batch_num", type=int, default=30)
 | 
						||
        parser.add_argument("--max_text_length", type=int, default=25)
 | 
						||
        parser.add_argument("--rec_char_dict_path", type=str, default=None)
 | 
						||
        parser.add_argument("--use_space_char", type=bool, default=True)
 | 
						||
        parser.add_argument("--drop_score", type=float, default=0.5)
 | 
						||
 | 
						||
        # params for text classifier
 | 
						||
        parser.add_argument("--cls_model_dir", type=str, default=None)
 | 
						||
        parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
 | 
						||
        parser.add_argument("--label_list", type=list, default=['0', '180'])
 | 
						||
        parser.add_argument("--cls_batch_num", type=int, default=30)
 | 
						||
        parser.add_argument("--cls_thresh", type=float, default=0.9)
 | 
						||
 | 
						||
        parser.add_argument("--enable_mkldnn", type=bool, default=False)
 | 
						||
        parser.add_argument("--use_zero_copy_run", type=bool, default=False)
 | 
						||
        parser.add_argument("--use_pdserving", type=str2bool, default=False)
 | 
						||
 | 
						||
        parser.add_argument("--lang", type=str, default='ch')
 | 
						||
        parser.add_argument("--det", type=str2bool, default=True)
 | 
						||
        parser.add_argument("--rec", type=str2bool, default=True)
 | 
						||
        parser.add_argument("--use_angle_cls", type=str2bool, default=False)
 | 
						||
        return parser.parse_args()
 | 
						||
    else:
 | 
						||
        return argparse.Namespace(use_gpu=True,
 | 
						||
                                  ir_optim=True,
 | 
						||
                                  use_tensorrt=False,
 | 
						||
                                  gpu_mem=8000,
 | 
						||
                                  image_dir='',
 | 
						||
                                  det_algorithm='DB',
 | 
						||
                                  det_model_dir=None,
 | 
						||
                                  det_limit_side_len=960,
 | 
						||
                                  det_limit_type='max',
 | 
						||
                                  det_db_thresh=0.3,
 | 
						||
                                  det_db_box_thresh=0.5,
 | 
						||
                                  det_db_unclip_ratio=2.0,
 | 
						||
                                  det_east_score_thresh=0.8,
 | 
						||
                                  det_east_cover_thresh=0.1,
 | 
						||
                                  det_east_nms_thresh=0.2,
 | 
						||
                                  rec_algorithm='CRNN',
 | 
						||
                                  rec_model_dir=None,
 | 
						||
                                  rec_image_shape="3, 32, 320",
 | 
						||
                                  rec_char_type='ch',
 | 
						||
                                  rec_batch_num=30,
 | 
						||
                                  max_text_length=25,
 | 
						||
                                  rec_char_dict_path=None,
 | 
						||
                                  use_space_char=True,
 | 
						||
                                  drop_score=0.5,
 | 
						||
                                  cls_model_dir=None,
 | 
						||
                                  cls_image_shape="3, 48, 192",
 | 
						||
                                  label_list=['0', '180'],
 | 
						||
                                  cls_batch_num=30,
 | 
						||
                                  cls_thresh=0.9,
 | 
						||
                                  enable_mkldnn=False,
 | 
						||
                                  use_zero_copy_run=False,
 | 
						||
                                  use_pdserving=False,
 | 
						||
                                  lang='ch',
 | 
						||
                                  det=True,
 | 
						||
                                  rec=True,
 | 
						||
                                  use_angle_cls=False
 | 
						||
                                  )
 | 
						||
 | 
						||
 | 
						||
class PaddleOCR(predict_system.TextSystem):
 | 
						||
    def __init__(self, **kwargs):
 | 
						||
        """
 | 
						||
        paddleocr package
 | 
						||
        args:
 | 
						||
            **kwargs: other params show in paddleocr --help
 | 
						||
        """
 | 
						||
        postprocess_params = parse_args(mMain=False, add_help=False)
 | 
						||
        postprocess_params.__dict__.update(**kwargs)
 | 
						||
        self.use_angle_cls = postprocess_params.use_angle_cls
 | 
						||
        lang = postprocess_params.lang
 | 
						||
        assert lang in model_urls[
 | 
						||
            'rec'], 'param lang must in {}, but got {}'.format(
 | 
						||
            model_urls['rec'].keys(), lang)
 | 
						||
        if postprocess_params.rec_char_dict_path is None:
 | 
						||
            postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
 | 
						||
                'dict_path']
 | 
						||
 | 
						||
        # init model dir
 | 
						||
        if postprocess_params.det_model_dir is None:
 | 
						||
            postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
 | 
						||
        if postprocess_params.rec_model_dir is None:
 | 
						||
            postprocess_params.rec_model_dir = os.path.join(
 | 
						||
                BASE_DIR, 'rec/{}'.format(lang))
 | 
						||
        if postprocess_params.cls_model_dir is None:
 | 
						||
            postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
 | 
						||
        print(postprocess_params)
 | 
						||
        # download model
 | 
						||
        maybe_download(postprocess_params.det_model_dir, model_urls['det'])
 | 
						||
        maybe_download(postprocess_params.rec_model_dir,
 | 
						||
                       model_urls['rec'][lang]['url'])
 | 
						||
        maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
 | 
						||
 | 
						||
        if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
 | 
						||
            logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
 | 
						||
            sys.exit(0)
 | 
						||
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
 | 
						||
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
 | 
						||
            sys.exit(0)
 | 
						||
 | 
						||
        postprocess_params.rec_char_dict_path = Path(
 | 
						||
            __file__).parent / postprocess_params.rec_char_dict_path
 | 
						||
 | 
						||
        # init det_model and rec_model
 | 
						||
        super().__init__(postprocess_params)
 | 
						||
 | 
						||
    def ocr(self, img, det=True, rec=True, cls=False):
 | 
						||
        """
 | 
						||
        ocr with paddleocr
 | 
						||
        args:
 | 
						||
            img: img for ocr, support ndarray, img_path and list or ndarray
 | 
						||
            det: use text detection or not, if false, only rec will be exec. default is True
 | 
						||
            rec: use text recognition or not, if false, only det will be exec. default is True
 | 
						||
        """
 | 
						||
        assert isinstance(img, (np.ndarray, list, str))
 | 
						||
        if isinstance(img, list) and det == True:
 | 
						||
            logger.error('When input a list of images, det must be false')
 | 
						||
            exit(0)
 | 
						||
 | 
						||
        self.use_angle_cls = cls
 | 
						||
        if isinstance(img, str):
 | 
						||
            # download net image
 | 
						||
            if img.startswith('http'):
 | 
						||
                download_with_progressbar(img, 'tmp.jpg')
 | 
						||
                img = 'tmp.jpg'
 | 
						||
            image_file = img
 | 
						||
            img, flag = check_and_read_gif(image_file)
 | 
						||
            if not flag:
 | 
						||
                img = cv2.imread(image_file)
 | 
						||
            if img is None:
 | 
						||
                logger.error("error in loading image:{}".format(image_file))
 | 
						||
                return None
 | 
						||
        if isinstance(img, np.ndarray) and len(img.shape) == 2:
 | 
						||
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 | 
						||
        if det and rec:
 | 
						||
            dt_boxes, rec_res = self.__call__(img)
 | 
						||
            return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
 | 
						||
        elif det and not rec:
 | 
						||
            dt_boxes, elapse = self.text_detector(img)
 | 
						||
            if dt_boxes is None:
 | 
						||
                return None
 | 
						||
            return [box.tolist() for box in dt_boxes]
 | 
						||
        else:
 | 
						||
            if not isinstance(img, list):
 | 
						||
                img = [img]
 | 
						||
            if self.use_angle_cls:
 | 
						||
                img, cls_res, elapse = self.text_classifier(img)
 | 
						||
                if not rec:
 | 
						||
                    return cls_res
 | 
						||
            rec_res, elapse = self.text_recognizer(img)
 | 
						||
            return rec_res
 | 
						||
 | 
						||
 | 
						||
def main():
 | 
						||
    # for cmd
 | 
						||
    args = parse_args(mMain=True)
 | 
						||
    image_dir = args.image_dir
 | 
						||
    if image_dir.startswith('http'):
 | 
						||
        download_with_progressbar(image_dir, 'tmp.jpg')
 | 
						||
        image_file_list = ['tmp.jpg']
 | 
						||
    else:
 | 
						||
        image_file_list = get_image_file_list(args.image_dir)
 | 
						||
    if len(image_file_list) == 0:
 | 
						||
        logger.error('no images find in {}'.format(args.image_dir))
 | 
						||
        return
 | 
						||
 | 
						||
    ocr_engine = PaddleOCR(**(args.__dict__))
 | 
						||
    for img_path in image_file_list:
 | 
						||
        logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
 | 
						||
        result = ocr_engine.ocr(img_path,
 | 
						||
                                det=args.det,
 | 
						||
                                rec=args.rec,
 | 
						||
                                cls=args.use_angle_cls)
 | 
						||
        if result is not None:
 | 
						||
            for line in result:
 | 
						||
                logger.info(line)
 |