PaddleOCR/paddleocr/_models/text_detection.py
Lin Manhui 3d03ca5500
[Breaking][Feat] New PaddleOCR inference package (#15046)
* Init new paddleocr

* Remove unused dependency

* Fix typos

* Fix

* Add doc understanding modules

* Fix package finding

* Normalize name

* Fix setting bugs

* Fix setting bug

* Support single model inference

* Add PP-ChatOCRv4-doc

* Add pp_chatocrv4_doc tests

* Enable MKL-DNN when available

* add seal_text_detection modules

* add layout_detection and table_cells_detection modules

* add testing scripts

* Fix desc

* add text_image_unwarping and table_structure_recognition modules

* add formula_recognition and doc_vlm modules

* update formula_recognition default_model_name

* add MKLDNN_BLOCKLIST

* update MKLDNN log

* add seal rec pipeline

* fix sth

* fix sth

* add doc preprocessor pipeline

* fix sth

* add doc understanding

* add table_rec_v2, ppstructurev3, formula_rec pipelines

* move test files

* forward kwargs to pipeline.predict

* clean test files

* Add missing kwargs

* Fix typo

* Fix typo

* rerun CI

* update mkldnn BLOCKLIST

* update

* update warning message

* fix cli args

* update PIPELINE_MKLDNN_BLOCKLIST

* update  of  workflow

* skip resource_intensive tests

* update config

* skip ppdocbee test_predict_params

---------

Co-authored-by: zhangyue66 <zhangyue66@baidu.com>
Co-authored-by: zhangzelun <zhangzelun@baidu.com>
2025-05-04 15:59:02 +08:00

101 lines
3.4 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..utils.cli import (
add_simple_inference_args,
get_subcommand_args,
perform_simple_inference,
)
from .base import PaddleXPredictorWrapper, PredictorCLISubcommandExecutor
class TextDetection(PaddleXPredictorWrapper):
def __init__(
self,
*,
limit_side_len=None,
limit_type=None,
thresh=None,
box_thresh=None,
unclip_ratio=None,
input_shape=None,
**kwargs,
):
self._extra_init_args = {
"limit_side_len": limit_side_len,
"limit_type": limit_type,
"thresh": thresh,
"box_thresh": box_thresh,
"unclip_ratio": unclip_ratio,
"input_shape": input_shape,
}
super().__init__(**kwargs)
@property
def default_model_name(self):
return "PP-OCRv4_mobile_det"
@classmethod
def get_cli_subcommand_executor(cls):
return TextDetectionSubcommandExecutor()
def _get_extra_paddlex_predictor_init_args(self):
return self._extra_init_args
class TextDetectionSubcommandExecutor(PredictorCLISubcommandExecutor):
@property
def subparser_name(self):
return "text_detection"
def _update_subparser(self, subparser):
add_simple_inference_args(subparser)
subparser.add_argument(
"--limit_side_len",
type=int,
help="This sets a limit on the side length of the input image for the model.",
)
subparser.add_argument(
"--limit_type",
type=str,
help="This determines how the side length limit is applied to the input image before feeding it into the model.",
)
subparser.add_argument(
"--thresh",
type=float,
help="Detection pixel threshold for the model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.",
)
subparser.add_argument(
"--box_thresh",
type=float,
help="Detection box threshold for the model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.",
)
subparser.add_argument(
"--unclip_ratio",
type=float,
help="Expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.",
)
subparser.add_argument(
"--input_shape",
nargs=3,
type=int,
metavar=("C", "H", "W"),
help="Input shape of the model.",
)
def execute_with_args(self, args):
params = get_subcommand_args(args)
perform_simple_inference(TextDetection, params)