PaddleOCR/tests/pipelines/test_pp_chatocrv4_doc.py
Lin Manhui 3d03ca5500
[Breaking][Feat] New PaddleOCR inference package (#15046)
* Init new paddleocr

* Remove unused dependency

* Fix typos

* Fix

* Add doc understanding modules

* Fix package finding

* Normalize name

* Fix setting bugs

* Fix setting bug

* Support single model inference

* Add PP-ChatOCRv4-doc

* Add pp_chatocrv4_doc tests

* Enable MKL-DNN when available

* add seal_text_detection modules

* add layout_detection and table_cells_detection modules

* add testing scripts

* Fix desc

* add text_image_unwarping and table_structure_recognition modules

* add formula_recognition and doc_vlm modules

* update formula_recognition default_model_name

* add MKLDNN_BLOCKLIST

* update MKLDNN log

* add seal rec pipeline

* fix sth

* fix sth

* add doc preprocessor pipeline

* fix sth

* add doc understanding

* add table_rec_v2, ppstructurev3, formula_rec pipelines

* move test files

* forward kwargs to pipeline.predict

* clean test files

* Add missing kwargs

* Fix typo

* Fix typo

* rerun CI

* update mkldnn BLOCKLIST

* update

* update warning message

* fix cli args

* update PIPELINE_MKLDNN_BLOCKLIST

* update  of  workflow

* skip resource_intensive tests

* update config

* skip ppdocbee test_predict_params

---------

Co-authored-by: zhangyue66 <zhangyue66@baidu.com>
Co-authored-by: zhangzelun <zhangzelun@baidu.com>
2025-05-04 15:59:02 +08:00

82 lines
2.2 KiB
Python

import pytest
from paddleocr import PPChatOCRv4Doc
from ..testing_utils import TEST_DATA_DIR
@pytest.fixture(scope="module")
def pp_chatocrv4_doc_pipeline():
return PPChatOCRv4Doc()
@pytest.mark.parametrize(
"image_path",
[
TEST_DATA_DIR / "doc_with_formula.png",
],
)
def test_visual_predict(pp_chatocrv4_doc_pipeline, image_path):
result = pp_chatocrv4_doc_pipeline.visual_predict(str(image_path))
assert result is not None
assert isinstance(result, list)
assert len(result) == 1
res = result[0]
assert isinstance(res, dict)
assert res.keys() == {"visual_info", "layout_parsing_result"}
assert isinstance(res["visual_info"], dict)
assert isinstance(res["layout_parsing_result"], dict)
@pytest.mark.parametrize(
"params",
[
{"use_doc_orientation_classify": False},
{"use_doc_unwarping": False},
{"use_general_ocr": False},
{"use_table_recognition": False},
{"layout_threshold": 0.88},
{"layout_threshold": [0.45, 0.4]},
{"layout_threshold": {0: 0.45, 2: 0.48, 7: 0.4}},
{"layout_nms": False},
{"layout_unclip_ratio": 1.1},
{"layout_unclip_ratio": [1.2, 1.5]},
{"layout_unclip_ratio": {0: 1.2, 2: 1.5, 7: 1.8}},
{"layout_merge_bboxes_mode": "large"},
{"layout_merge_bboxes_mode": {0: "large", 2: "small", 7: "union"}},
{"text_det_limit_side_len": 640, "text_det_limit_type": "min"},
{"text_det_thresh": 0.5},
{"text_det_box_thresh": 0.3},
{"text_det_unclip_ratio": 3.0},
{"text_rec_score_thresh": 0.5},
],
)
def test_predict_params(
monkeypatch,
pp_chatocrv4_doc_pipeline,
params,
):
def _dummy_visual_predict(input, **params):
yield {"visual_info": {}, "layout_parsing_result": params}
monkeypatch.setattr(
pp_chatocrv4_doc_pipeline.paddlex_pipeline,
"visual_predict",
_dummy_visual_predict,
)
result = pp_chatocrv4_doc_pipeline.visual_predict(
input,
**params,
)
assert isinstance(result, list)
assert len(result) == 1
res = result[0]
res = res["layout_parsing_result"]
for k, v in params.items():
assert res[k] == v
# TODO: Test constructor and other methods