mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			375 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Bash
		
	
	
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Bash
		
	
	
	
	
	
| #!/bin/bash
 | |
| source test_tipc/common_func.sh
 | |
| 
 | |
| FILENAME=$1
 | |
| # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
 | |
| MODE=$2
 | |
| 
 | |
| dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
 | |
| 
 | |
| # parser params
 | |
| IFS=$'\n'
 | |
| lines=(${dataline})
 | |
| 
 | |
| # The training params
 | |
| model_name=$(func_parser_value "${lines[1]}")
 | |
| python=$(func_parser_value "${lines[2]}")
 | |
| gpu_list=$(func_parser_value "${lines[3]}")
 | |
| train_use_gpu_key=$(func_parser_key "${lines[4]}")
 | |
| train_use_gpu_value=$(func_parser_value "${lines[4]}")
 | |
| autocast_list=$(func_parser_value "${lines[5]}")
 | |
| autocast_key=$(func_parser_key "${lines[5]}")
 | |
| epoch_key=$(func_parser_key "${lines[6]}")
 | |
| epoch_num=$(func_parser_params "${lines[6]}" "${MODE}")
 | |
| save_model_key=$(func_parser_key "${lines[7]}")
 | |
| train_batch_key=$(func_parser_key "${lines[8]}")
 | |
| train_batch_value=$(func_parser_params "${lines[8]}" "${MODE}")
 | |
| pretrain_model_key=$(func_parser_key "${lines[9]}")
 | |
| pretrain_model_value=$(func_parser_value "${lines[9]}")
 | |
| train_model_name=$(func_parser_value "${lines[10]}")
 | |
| train_infer_img_dir=$(func_parser_value "${lines[11]}")
 | |
| train_param_key1=$(func_parser_key "${lines[12]}")
 | |
| train_param_value1=$(func_parser_value "${lines[12]}")
 | |
| 
 | |
| trainer_list=$(func_parser_value "${lines[14]}")
 | |
| trainer_norm=$(func_parser_key "${lines[15]}")
 | |
| norm_trainer=$(func_parser_value "${lines[15]}")
 | |
| pact_key=$(func_parser_key "${lines[16]}")
 | |
| pact_trainer=$(func_parser_value "${lines[16]}")
 | |
| fpgm_key=$(func_parser_key "${lines[17]}")
 | |
| fpgm_trainer=$(func_parser_value "${lines[17]}")
 | |
| distill_key=$(func_parser_key "${lines[18]}")
 | |
| distill_trainer=$(func_parser_value "${lines[18]}")
 | |
| trainer_key1=$(func_parser_key "${lines[19]}")
 | |
| trainer_value1=$(func_parser_value "${lines[19]}")
 | |
| trainer_key2=$(func_parser_key "${lines[20]}")
 | |
| trainer_value2=$(func_parser_value "${lines[20]}")
 | |
| 
 | |
| eval_py=$(func_parser_value "${lines[23]}")
 | |
| eval_key1=$(func_parser_key "${lines[24]}")
 | |
| eval_value1=$(func_parser_value "${lines[24]}")
 | |
| 
 | |
| save_infer_key=$(func_parser_key "${lines[27]}")
 | |
| export_weight=$(func_parser_key "${lines[28]}")
 | |
| norm_export=$(func_parser_value "${lines[29]}")
 | |
| pact_export=$(func_parser_value "${lines[30]}")
 | |
| fpgm_export=$(func_parser_value "${lines[31]}")
 | |
| distill_export=$(func_parser_value "${lines[32]}")
 | |
| export_key1=$(func_parser_key "${lines[33]}")
 | |
| export_value1=$(func_parser_value "${lines[33]}")
 | |
| export_key2=$(func_parser_key "${lines[34]}")
 | |
| export_value2=$(func_parser_value "${lines[34]}")
 | |
| inference_dir=$(func_parser_value "${lines[35]}")
 | |
| 
 | |
| # parser inference model 
 | |
| infer_model_dir_list=$(func_parser_value "${lines[36]}")
 | |
| infer_export_list=$(func_parser_value "${lines[37]}")
 | |
| infer_is_quant=$(func_parser_value "${lines[38]}")
 | |
| # parser inference 
 | |
| inference_py=$(func_parser_value "${lines[39]}")
 | |
| use_gpu_key=$(func_parser_key "${lines[40]}")
 | |
| use_gpu_list=$(func_parser_value "${lines[40]}")
 | |
| use_mkldnn_key=$(func_parser_key "${lines[41]}")
 | |
| use_mkldnn_list=$(func_parser_value "${lines[41]}")
 | |
| cpu_threads_key=$(func_parser_key "${lines[42]}")
 | |
| cpu_threads_list=$(func_parser_value "${lines[42]}")
 | |
| batch_size_key=$(func_parser_key "${lines[43]}")
 | |
| batch_size_list=$(func_parser_value "${lines[43]}")
 | |
| use_trt_key=$(func_parser_key "${lines[44]}")
 | |
| use_trt_list=$(func_parser_value "${lines[44]}")
 | |
| precision_key=$(func_parser_key "${lines[45]}")
 | |
| precision_list=$(func_parser_value "${lines[45]}")
 | |
| infer_model_key=$(func_parser_key "${lines[46]}")
 | |
| image_dir_key=$(func_parser_key "${lines[47]}")
 | |
| infer_img_dir=$(func_parser_value "${lines[47]}")
 | |
| save_log_key=$(func_parser_key "${lines[48]}")
 | |
| benchmark_key=$(func_parser_key "${lines[49]}")
 | |
| benchmark_value=$(func_parser_value "${lines[49]}")
 | |
| infer_key1=$(func_parser_key "${lines[50]}")
 | |
| infer_value1=$(func_parser_value "${lines[50]}")
 | |
| 
 | |
| # parser klquant_infer
 | |
| if [ ${MODE} = "klquant_whole_infer" ]; then
 | |
|     dataline=$(awk 'NR==1, NR==17{print}'  $FILENAME)
 | |
|     lines=(${dataline})
 | |
|     model_name=$(func_parser_value "${lines[1]}")
 | |
|     python=$(func_parser_value "${lines[2]}")
 | |
|     export_weight=$(func_parser_key "${lines[3]}")
 | |
|     save_infer_key=$(func_parser_key "${lines[4]}")
 | |
|     # parser inference model 
 | |
|     infer_model_dir_list=$(func_parser_value "${lines[5]}")
 | |
|     infer_export_list=$(func_parser_value "${lines[6]}")
 | |
|     infer_is_quant=$(func_parser_value "${lines[7]}")
 | |
|     # parser inference 
 | |
|     inference_py=$(func_parser_value "${lines[8]}")
 | |
|     use_gpu_key=$(func_parser_key "${lines[9]}")
 | |
|     use_gpu_list=$(func_parser_value "${lines[9]}")
 | |
|     use_mkldnn_key=$(func_parser_key "${lines[10]}")
 | |
|     use_mkldnn_list=$(func_parser_value "${lines[10]}")
 | |
|     cpu_threads_key=$(func_parser_key "${lines[11]}")
 | |
|     cpu_threads_list=$(func_parser_value "${lines[11]}")
 | |
|     batch_size_key=$(func_parser_key "${lines[12]}")
 | |
|     batch_size_list=$(func_parser_value "${lines[12]}")
 | |
|     use_trt_key=$(func_parser_key "${lines[13]}")
 | |
|     use_trt_list=$(func_parser_value "${lines[13]}")
 | |
|     precision_key=$(func_parser_key "${lines[14]}")
 | |
|     precision_list=$(func_parser_value "${lines[14]}")
 | |
|     infer_model_key=$(func_parser_key "${lines[15]}")
 | |
|     image_dir_key=$(func_parser_key "${lines[16]}")
 | |
|     infer_img_dir=$(func_parser_value "${lines[16]}")
 | |
|     save_log_key=$(func_parser_key "${lines[17]}")
 | |
|     save_log_value=$(func_parser_value "${lines[17]}")
 | |
|     benchmark_key=$(func_parser_key "${lines[18]}")
 | |
|     benchmark_value=$(func_parser_value "${lines[18]}")
 | |
|     infer_key1=$(func_parser_key "${lines[19]}")
 | |
|     infer_value1=$(func_parser_value "${lines[19]}")
 | |
| fi
 | |
| 
 | |
| LOG_PATH="./test_tipc/output"
 | |
| mkdir -p ${LOG_PATH}
 | |
| status_log="${LOG_PATH}/results_python.log"
 | |
| 
 | |
| 
 | |
| function func_inference(){
 | |
|     IFS='|'
 | |
|     _python=$1
 | |
|     _script=$2
 | |
|     _model_dir=$3
 | |
|     _log_path=$4
 | |
|     _img_dir=$5
 | |
|     _flag_quant=$6
 | |
|     # inference 
 | |
|     for use_gpu in ${use_gpu_list[*]}; do
 | |
|         if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
 | |
|             for use_mkldnn in ${use_mkldnn_list[*]}; do
 | |
|                 if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
 | |
|                     continue
 | |
|                 fi
 | |
|                 for threads in ${cpu_threads_list[*]}; do
 | |
|                     for batch_size in ${batch_size_list[*]}; do
 | |
|                         for precision in ${precision_list[*]}; do
 | |
|                             if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
 | |
|                                 continue
 | |
|                             fi # skip when enable fp16 but disable mkldnn
 | |
|                             if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
 | |
|                                 continue
 | |
|                             fi # skip when quant model inference but precision is not int8
 | |
|                             set_precision=$(func_set_params "${precision_key}" "${precision}")
 | |
|                             
 | |
|                             _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
 | |
|                             set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
 | |
|                             set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
 | |
|                             set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
 | |
|                             set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
 | |
|                             set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
 | |
|                             set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
 | |
|                             set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
 | |
|                             set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
 | |
|                             command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
 | |
|                             eval $command
 | |
|                             last_status=${PIPESTATUS[0]}
 | |
|                             eval "cat ${_save_log_path}"
 | |
|                             status_check $last_status "${command}" "${status_log}"
 | |
|                         done
 | |
|                     done
 | |
|                 done
 | |
|             done
 | |
|         elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
 | |
|             for use_trt in ${use_trt_list[*]}; do
 | |
|                 for precision in ${precision_list[*]}; do
 | |
|                     if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
 | |
|                         continue
 | |
|                     fi 
 | |
|                     if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
 | |
|                         continue
 | |
|                     fi
 | |
|                     if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
 | |
|                         continue
 | |
|                     fi
 | |
|                     for batch_size in ${batch_size_list[*]}; do
 | |
|                         _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
 | |
|                         set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
 | |
|                         set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
 | |
|                         set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
 | |
|                         set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
 | |
|                         set_precision=$(func_set_params "${precision_key}" "${precision}")
 | |
|                         set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
 | |
|                         set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
 | |
|                         set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
 | |
|                         command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
 | |
|                         eval $command
 | |
|                         last_status=${PIPESTATUS[0]}
 | |
|                         eval "cat ${_save_log_path}"
 | |
|                         status_check $last_status "${command}" "${status_log}"
 | |
|                         
 | |
|                     done
 | |
|                 done
 | |
|             done
 | |
|         else
 | |
|             echo "Does not support hardware other than CPU and GPU Currently!"
 | |
|         fi
 | |
|     done
 | |
| }
 | |
| 
 | |
| if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
 | |
|     GPUID=$3
 | |
|     if [ ${#GPUID} -le 0 ];then
 | |
|         env=" "
 | |
|     else
 | |
|         env="export CUDA_VISIBLE_DEVICES=${GPUID}"
 | |
|     fi
 | |
|     # set CUDA_VISIBLE_DEVICES
 | |
|     eval $env
 | |
|     export Count=0
 | |
|     IFS="|"
 | |
|     infer_run_exports=(${infer_export_list})
 | |
|     infer_quant_flag=(${infer_is_quant})
 | |
|     for infer_model in ${infer_model_dir_list[*]}; do
 | |
|         # run export
 | |
|         if [ ${infer_run_exports[Count]} != "null" ];then
 | |
|             save_infer_dir=$(dirname $infer_model)
 | |
|             set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
 | |
|             set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
 | |
|             export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
 | |
|             echo ${infer_run_exports[Count]} 
 | |
|             echo $export_cmd
 | |
|             eval $export_cmd
 | |
|             status_export=$?
 | |
|             status_check $status_export "${export_cmd}" "${status_log}"
 | |
|         else
 | |
|             save_infer_dir=${infer_model}
 | |
|         fi
 | |
|         #run inference
 | |
|         is_quant=${infer_quant_flag[Count]}
 | |
|         if [ ${MODE} = "klquant_whole_infer" ]; then
 | |
|             is_quant="True"
 | |
|         fi
 | |
|         func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
 | |
|         Count=$(($Count + 1))
 | |
|     done
 | |
| else
 | |
|     IFS="|"
 | |
|     export Count=0
 | |
|     USE_GPU_KEY=(${train_use_gpu_value})
 | |
|     for gpu in ${gpu_list[*]}; do
 | |
|         train_use_gpu=${USE_GPU_KEY[Count]}
 | |
|         Count=$(($Count + 1))
 | |
|         ips=""
 | |
|         if [ ${gpu} = "-1" ];then
 | |
|             env=""
 | |
|         elif [ ${#gpu} -le 1 ];then
 | |
|             env="export CUDA_VISIBLE_DEVICES=${gpu}"
 | |
|             eval ${env}
 | |
|         elif [ ${#gpu} -le 15 ];then
 | |
|             IFS=","
 | |
|             array=(${gpu})
 | |
|             env="export CUDA_VISIBLE_DEVICES=${array[0]}"
 | |
|             IFS="|"
 | |
|         else
 | |
|             IFS=";"
 | |
|             array=(${gpu})
 | |
|             ips=${array[0]}
 | |
|             gpu=${array[1]}
 | |
|             IFS="|"
 | |
|             env=" "
 | |
|         fi
 | |
|         for autocast in ${autocast_list[*]}; do 
 | |
|             if [ ${autocast} = "amp" ]; then
 | |
|                 set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
 | |
|             else
 | |
|                 set_amp_config=" "
 | |
|             fi          
 | |
|             for trainer in ${trainer_list[*]}; do 
 | |
|                 flag_quant=False
 | |
|                 if [ ${trainer} = ${pact_key} ]; then
 | |
|                     run_train=${pact_trainer}
 | |
|                     run_export=${pact_export}
 | |
|                     flag_quant=True
 | |
|                 elif [ ${trainer} = "${fpgm_key}" ]; then
 | |
|                     run_train=${fpgm_trainer}
 | |
|                     run_export=${fpgm_export}
 | |
|                 elif [ ${trainer} = "${distill_key}" ]; then
 | |
|                     run_train=${distill_trainer}
 | |
|                     run_export=${distill_export}
 | |
|                 elif [ ${trainer} = ${trainer_key1} ]; then
 | |
|                     run_train=${trainer_value1}
 | |
|                     run_export=${export_value1}
 | |
|                 elif [[ ${trainer} = ${trainer_key2} ]]; then
 | |
|                     run_train=${trainer_value2}
 | |
|                     run_export=${export_value2}
 | |
|                 else
 | |
|                     run_train=${norm_trainer}
 | |
|                     run_export=${norm_export}
 | |
|                 fi
 | |
| 
 | |
|                 if [ ${run_train} = "null" ]; then
 | |
|                     continue
 | |
|                 fi
 | |
|                 set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
 | |
|                 set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
 | |
|                 set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
 | |
|                 set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
 | |
|                 set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
 | |
|                 set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
 | |
|                 if [ ${#ips} -le 26 ];then
 | |
|                     save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
 | |
|                     nodes=1
 | |
|                 else
 | |
|                     IFS=","
 | |
|                     ips_array=(${ips})
 | |
|                     IFS="|"
 | |
|                     nodes=${#ips_array[@]}
 | |
|                     save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
 | |
|                 fi
 | |
| 
 | |
| 
 | |
|                 set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
 | |
|                 if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
 | |
|                     cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
 | |
|                 elif [ ${#ips} -le 26 ];then  # train with multi-gpu
 | |
|                     cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
 | |
|                 else     # train with multi-machine
 | |
|                     cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
 | |
|                 fi
 | |
|                 # run train
 | |
|                 eval "unset CUDA_VISIBLE_DEVICES"
 | |
|                 eval $cmd
 | |
|                 status_check $? "${cmd}" "${status_log}"
 | |
| 
 | |
|                 set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
 | |
| 
 | |
|                 # run eval 
 | |
|                 if [ ${eval_py} != "null" ]; then
 | |
|                     set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
 | |
|                     eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
 | |
|                     eval $eval_cmd
 | |
|                     status_check $? "${eval_cmd}" "${status_log}"
 | |
|                 fi
 | |
|                 # run export model
 | |
|                 if [ ${run_export} != "null" ]; then 
 | |
|                     # run export model
 | |
|                     save_infer_path="${save_log}"
 | |
|                     set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
 | |
|                     set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
 | |
|                     export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
 | |
|                     eval $export_cmd
 | |
|                     status_check $? "${export_cmd}" "${status_log}"
 | |
| 
 | |
|                     #run inference
 | |
|                     eval $env
 | |
|                     save_infer_path="${save_log}"
 | |
|                     if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
 | |
|                         infer_model_dir="${save_infer_path}/${inference_dir}"
 | |
|                     else
 | |
|                         infer_model_dir=${save_infer_path}
 | |
|                     fi
 | |
|                     func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
 | |
|                     
 | |
|                     eval "unset CUDA_VISIBLE_DEVICES"
 | |
|                 fi
 | |
|             done  # done with:    for trainer in ${trainer_list[*]}; do 
 | |
|         done      # done with:    for autocast in ${autocast_list[*]}; do 
 | |
|     done          # done with:    for gpu in ${gpu_list[*]}; do
 | |
| fi  # end if [ ${MODE} = "infer" ]; then
 | |
| 
 | 
