mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 11:49:14 +00:00 
			
		
		
		
	
		
			
				
	
	
	
		
			4.6 KiB
		
	
	
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			4.6 KiB
		
	
	
	
	
		
			Executable File
		
	
	
	
	
算法介绍
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在英文公开数据集上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考PP-OCR v2.0 系列模型下载。
1.文本检测算法
PaddleOCR开源的文本检测算法列表:
在ICDAR2015文本检测公开数据集上,算法效果如下:
| 模型 | 骨干网络 | precision | recall | Hmean | 下载链接 | 
|---|---|---|---|---|---|
| EAST | ResNet50_vd | 85.80% | 86.71% | 86.25% | 下载链接 | 
| EAST | MobileNetV3 | 79.42% | 80.64% | 80.03% | 下载链接 | 
| DB | ResNet50_vd | 86.41% | 78.72% | 82.38% | 下载链接 | 
| DB | MobileNetV3 | 77.29% | 73.08% | 75.12% | 下载链接 | 
| SAST | ResNet50_vd | 91.39% | 83.77% | 87.42% | 下载链接 | 
在Total-text文本检测公开数据集上,算法效果如下:
| 模型 | 骨干网络 | precision | recall | Hmean | 下载链接 | 
|---|---|---|---|---|---|
| SAST | ResNet50_vd | 89.63% | 78.44% | 83.66% | 下载链接 | 
说明: SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
- 百度云地址 (提取码: 2bpi)
 - Google Drive下载地址
 
PaddleOCR文本检测算法的训练和使用请参考文档教程中模型训练/评估中的文本检测部分。
2.文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表:
参考[DTRB]3文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
| 模型 | 骨干网络 | Avg Accuracy | 模型存储命名 | 下载链接 | 
|---|---|---|---|---|
| Rosetta | Resnet34_vd | 80.9% | rec_r34_vd_none_none_ctc | 下载链接 | 
| Rosetta | MobileNetV3 | 78.05% | rec_mv3_none_none_ctc | 下载链接 | 
| CRNN | Resnet34_vd | 82.76% | rec_r34_vd_none_bilstm_ctc | 下载链接 | 
| CRNN | MobileNetV3 | 79.97% | rec_mv3_none_bilstm_ctc | 下载链接 | 
| StarNet | Resnet34_vd | 84.44% | rec_r34_vd_tps_bilstm_ctc | 下载链接 | 
| StarNet | MobileNetV3 | 81.42% | rec_mv3_tps_bilstm_ctc | 下载链接 | 
| RARE | MobileNetV3 | 82.5% | rec_mv3_tps_bilstm_att | 下载链接 | 
| RARE | Resnet34_vd | 83.6% | rec_r34_vd_tps_bilstm_att | 下载链接 | 
| SRN | Resnet50_vd_fpn | 88.52% | rec_r50fpn_vd_none_srn | 下载链接 | 
PaddleOCR文本识别算法的训练和使用请参考文档教程中模型训练/评估中的文本识别部分。