mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			460 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			460 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import cv2
 | |
| import copy
 | |
| import numpy as np
 | |
| import math
 | |
| import re
 | |
| import sys
 | |
| import argparse
 | |
| import string
 | |
| from copy import deepcopy
 | |
| 
 | |
| 
 | |
| class DetResizeForTest(object):
 | |
|     def __init__(self, **kwargs):
 | |
|         super(DetResizeForTest, self).__init__()
 | |
|         self.resize_type = 0
 | |
|         if 'image_shape' in kwargs:
 | |
|             self.image_shape = kwargs['image_shape']
 | |
|             self.resize_type = 1
 | |
|         elif 'limit_side_len' in kwargs:
 | |
|             self.limit_side_len = kwargs['limit_side_len']
 | |
|             self.limit_type = kwargs.get('limit_type', 'min')
 | |
|         elif 'resize_short' in kwargs:
 | |
|             self.limit_side_len = 736
 | |
|             self.limit_type = 'min'
 | |
|         else:
 | |
|             self.resize_type = 2
 | |
|             self.resize_long = kwargs.get('resize_long', 960)
 | |
| 
 | |
|     def __call__(self, data):
 | |
|         img = deepcopy(data)
 | |
|         src_h, src_w, _ = img.shape
 | |
| 
 | |
|         if self.resize_type == 0:
 | |
|             img, [ratio_h, ratio_w] = self.resize_image_type0(img)
 | |
|         elif self.resize_type == 2:
 | |
|             img, [ratio_h, ratio_w] = self.resize_image_type2(img)
 | |
|         else:
 | |
|             img, [ratio_h, ratio_w] = self.resize_image_type1(img)
 | |
| 
 | |
|         return img
 | |
| 
 | |
|     def resize_image_type1(self, img):
 | |
|         resize_h, resize_w = self.image_shape
 | |
|         ori_h, ori_w = img.shape[:2]  # (h, w, c)
 | |
|         ratio_h = float(resize_h) / ori_h
 | |
|         ratio_w = float(resize_w) / ori_w
 | |
|         img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | |
|         return img, [ratio_h, ratio_w]
 | |
| 
 | |
|     def resize_image_type0(self, img):
 | |
|         """
 | |
|         resize image to a size multiple of 32 which is required by the network
 | |
|         args:
 | |
|             img(array): array with shape [h, w, c]
 | |
|         return(tuple):
 | |
|             img, (ratio_h, ratio_w)
 | |
|         """
 | |
|         limit_side_len = self.limit_side_len
 | |
|         h, w, _ = img.shape
 | |
| 
 | |
|         # limit the max side
 | |
|         if self.limit_type == 'max':
 | |
|             if max(h, w) > limit_side_len:
 | |
|                 if h > w:
 | |
|                     ratio = float(limit_side_len) / h
 | |
|                 else:
 | |
|                     ratio = float(limit_side_len) / w
 | |
|             else:
 | |
|                 ratio = 1.
 | |
|         else:
 | |
|             if min(h, w) < limit_side_len:
 | |
|                 if h < w:
 | |
|                     ratio = float(limit_side_len) / h
 | |
|                 else:
 | |
|                     ratio = float(limit_side_len) / w
 | |
|             else:
 | |
|                 ratio = 1.
 | |
|         resize_h = int(h * ratio)
 | |
|         resize_w = int(w * ratio)
 | |
| 
 | |
|         resize_h = int(round(resize_h / 32) * 32)
 | |
|         resize_w = int(round(resize_w / 32) * 32)
 | |
| 
 | |
|         try:
 | |
|             if int(resize_w) <= 0 or int(resize_h) <= 0:
 | |
|                 return None, (None, None)
 | |
|             img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | |
|         except:
 | |
|             print(img.shape, resize_w, resize_h)
 | |
|             sys.exit(0)
 | |
|         ratio_h = resize_h / float(h)
 | |
|         ratio_w = resize_w / float(w)
 | |
|         # return img, np.array([h, w])
 | |
|         return img, [ratio_h, ratio_w]
 | |
| 
 | |
|     def resize_image_type2(self, img):
 | |
|         h, w, _ = img.shape
 | |
| 
 | |
|         resize_w = w
 | |
|         resize_h = h
 | |
| 
 | |
|         # Fix the longer side
 | |
|         if resize_h > resize_w:
 | |
|             ratio = float(self.resize_long) / resize_h
 | |
|         else:
 | |
|             ratio = float(self.resize_long) / resize_w
 | |
| 
 | |
|         resize_h = int(resize_h * ratio)
 | |
|         resize_w = int(resize_w * ratio)
 | |
| 
 | |
|         max_stride = 128
 | |
|         resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 | |
|         resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 | |
|         img = cv2.resize(img, (int(resize_w), int(resize_h)))
 | |
|         ratio_h = resize_h / float(h)
 | |
|         ratio_w = resize_w / float(w)
 | |
| 
 | |
|         return img, [ratio_h, ratio_w]
 | |
| 
 | |
| 
 | |
| class BaseRecLabelDecode(object):
 | |
|     """ Convert between text-label and text-index """
 | |
| 
 | |
|     def __init__(self, config):
 | |
|         support_character_type = [
 | |
|             'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
 | |
|             'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
 | |
|             'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
 | |
|             'ne', 'EN'
 | |
|         ]
 | |
|         character_type = config['character_type']
 | |
|         character_dict_path = config['character_dict_path']
 | |
|         use_space_char = True
 | |
|         assert character_type in support_character_type, "Only {} are supported now but get {}".format(
 | |
|             support_character_type, character_type)
 | |
| 
 | |
|         self.beg_str = "sos"
 | |
|         self.end_str = "eos"
 | |
| 
 | |
|         if character_type == "en":
 | |
|             self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 | |
|             dict_character = list(self.character_str)
 | |
|         elif character_type == "EN_symbol":
 | |
|             # same with ASTER setting (use 94 char).
 | |
|             self.character_str = string.printable[:-6]
 | |
|             dict_character = list(self.character_str)
 | |
|         elif character_type in support_character_type:
 | |
|             self.character_str = ""
 | |
|             assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
 | |
|                 character_type)
 | |
|             with open(character_dict_path, "rb") as fin:
 | |
|                 lines = fin.readlines()
 | |
|                 for line in lines:
 | |
|                     line = line.decode('utf-8').strip("\n").strip("\r\n")
 | |
|                     self.character_str += line
 | |
|             if use_space_char:
 | |
|                 self.character_str += " "
 | |
|             dict_character = list(self.character_str)
 | |
| 
 | |
|         else:
 | |
|             raise NotImplementedError
 | |
|         self.character_type = character_type
 | |
|         dict_character = self.add_special_char(dict_character)
 | |
|         self.dict = {}
 | |
|         for i, char in enumerate(dict_character):
 | |
|             self.dict[char] = i
 | |
|         self.character = dict_character
 | |
| 
 | |
|     def add_special_char(self, dict_character):
 | |
|         return dict_character
 | |
| 
 | |
|     def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
 | |
|         """ convert text-index into text-label. """
 | |
|         result_list = []
 | |
|         ignored_tokens = self.get_ignored_tokens()
 | |
|         batch_size = len(text_index)
 | |
|         for batch_idx in range(batch_size):
 | |
|             char_list = []
 | |
|             conf_list = []
 | |
|             for idx in range(len(text_index[batch_idx])):
 | |
|                 if text_index[batch_idx][idx] in ignored_tokens:
 | |
|                     continue
 | |
|                 if is_remove_duplicate:
 | |
|                     # only for predict
 | |
|                     if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
 | |
|                             batch_idx][idx]:
 | |
|                         continue
 | |
|                 char_list.append(self.character[int(text_index[batch_idx][
 | |
|                     idx])])
 | |
|                 if text_prob is not None:
 | |
|                     conf_list.append(text_prob[batch_idx][idx])
 | |
|                 else:
 | |
|                     conf_list.append(1)
 | |
|             text = ''.join(char_list)
 | |
|             result_list.append((text, np.mean(conf_list)))
 | |
|         return result_list
 | |
| 
 | |
|     def get_ignored_tokens(self):
 | |
|         return [0]  # for ctc blank
 | |
| 
 | |
| 
 | |
| class CTCLabelDecode(BaseRecLabelDecode):
 | |
|     """ Convert between text-label and text-index """
 | |
| 
 | |
|     def __init__(
 | |
|             self,
 | |
|             config,
 | |
|             #character_dict_path=None,
 | |
|             #character_type='ch',
 | |
|             #use_space_char=False,
 | |
|             **kwargs):
 | |
|         super(CTCLabelDecode, self).__init__(config)
 | |
| 
 | |
|     def __call__(self, preds, label=None, *args, **kwargs):
 | |
|         preds_idx = preds.argmax(axis=2)
 | |
|         preds_prob = preds.max(axis=2)
 | |
|         text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
 | |
|         if label is None:
 | |
|             return text
 | |
|         label = self.decode(label)
 | |
|         return text, label
 | |
| 
 | |
|     def add_special_char(self, dict_character):
 | |
|         dict_character = ['blank'] + dict_character
 | |
|         return dict_character
 | |
| 
 | |
| 
 | |
| class CharacterOps(object):
 | |
|     """ Convert between text-label and text-index """
 | |
| 
 | |
|     def __init__(self, config):
 | |
|         self.character_type = config['character_type']
 | |
|         self.loss_type = config['loss_type']
 | |
|         if self.character_type == "en":
 | |
|             self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 | |
|             dict_character = list(self.character_str)
 | |
|         elif self.character_type == "ch":
 | |
|             character_dict_path = config['character_dict_path']
 | |
|             self.character_str = ""
 | |
|             with open(character_dict_path, "rb") as fin:
 | |
|                 lines = fin.readlines()
 | |
|                 for line in lines:
 | |
|                     line = line.decode('utf-8').strip("\n").strip("\r\n")
 | |
|                     self.character_str += line
 | |
|             dict_character = list(self.character_str)
 | |
|         elif self.character_type == "en_sensitive":
 | |
|             # same with ASTER setting (use 94 char).
 | |
|             self.character_str = string.printable[:-6]
 | |
|             dict_character = list(self.character_str)
 | |
|         else:
 | |
|             self.character_str = None
 | |
|         assert self.character_str is not None, \
 | |
|             "Nonsupport type of the character: {}".format(self.character_str)
 | |
|         self.beg_str = "sos"
 | |
|         self.end_str = "eos"
 | |
|         if self.loss_type == "attention":
 | |
|             dict_character = [self.beg_str, self.end_str] + dict_character
 | |
|         self.dict = {}
 | |
|         for i, char in enumerate(dict_character):
 | |
|             self.dict[char] = i
 | |
|         self.character = dict_character
 | |
| 
 | |
|     def encode(self, text):
 | |
|         """convert text-label into text-index.
 | |
|         input:
 | |
|             text: text labels of each image. [batch_size]
 | |
| 
 | |
|         output:
 | |
|             text: concatenated text index for CTCLoss.
 | |
|                     [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
 | |
|             length: length of each text. [batch_size]
 | |
|         """
 | |
|         if self.character_type == "en":
 | |
|             text = text.lower()
 | |
| 
 | |
|         text_list = []
 | |
|         for char in text:
 | |
|             if char not in self.dict:
 | |
|                 continue
 | |
|             text_list.append(self.dict[char])
 | |
|         text = np.array(text_list)
 | |
|         return text
 | |
| 
 | |
|     def decode(self, text_index, is_remove_duplicate=False):
 | |
|         """ convert text-index into text-label. """
 | |
|         char_list = []
 | |
|         char_num = self.get_char_num()
 | |
| 
 | |
|         if self.loss_type == "attention":
 | |
|             beg_idx = self.get_beg_end_flag_idx("beg")
 | |
|             end_idx = self.get_beg_end_flag_idx("end")
 | |
|             ignored_tokens = [beg_idx, end_idx]
 | |
|         else:
 | |
|             ignored_tokens = [char_num]
 | |
| 
 | |
|         for idx in range(len(text_index)):
 | |
|             if text_index[idx] in ignored_tokens:
 | |
|                 continue
 | |
|             if is_remove_duplicate:
 | |
|                 if idx > 0 and text_index[idx - 1] == text_index[idx]:
 | |
|                     continue
 | |
|             char_list.append(self.character[text_index[idx]])
 | |
|         text = ''.join(char_list)
 | |
|         return text
 | |
| 
 | |
|     def get_char_num(self):
 | |
|         return len(self.character)
 | |
| 
 | |
|     def get_beg_end_flag_idx(self, beg_or_end):
 | |
|         if self.loss_type == "attention":
 | |
|             if beg_or_end == "beg":
 | |
|                 idx = np.array(self.dict[self.beg_str])
 | |
|             elif beg_or_end == "end":
 | |
|                 idx = np.array(self.dict[self.end_str])
 | |
|             else:
 | |
|                 assert False, "Unsupport type %s in get_beg_end_flag_idx"\
 | |
|                     % beg_or_end
 | |
|             return idx
 | |
|         else:
 | |
|             err = "error in get_beg_end_flag_idx when using the loss %s"\
 | |
|                 % (self.loss_type)
 | |
|             assert False, err
 | |
| 
 | |
| 
 | |
| class OCRReader(object):
 | |
|     def __init__(self,
 | |
|                  algorithm="CRNN",
 | |
|                  image_shape=[3, 48, 320],
 | |
|                  char_type="ch",
 | |
|                  batch_num=1,
 | |
|                  char_dict_path="./ppocr_keys_v1.txt"):
 | |
|         self.rec_image_shape = image_shape
 | |
|         self.character_type = char_type
 | |
|         self.rec_batch_num = batch_num
 | |
|         char_ops_params = {}
 | |
|         char_ops_params["character_type"] = char_type
 | |
|         char_ops_params["character_dict_path"] = char_dict_path
 | |
|         char_ops_params['loss_type'] = 'ctc'
 | |
|         self.char_ops = CharacterOps(char_ops_params)
 | |
|         self.label_ops = CTCLabelDecode(char_ops_params)
 | |
| 
 | |
|     def resize_norm_img(self, img, max_wh_ratio):
 | |
|         imgC, imgH, imgW = self.rec_image_shape
 | |
|         if self.character_type == "ch":
 | |
|             imgW = int(imgH * max_wh_ratio)
 | |
|         h = img.shape[0]
 | |
|         w = img.shape[1]
 | |
|         ratio = w / float(h)
 | |
|         if math.ceil(imgH * ratio) > imgW:
 | |
|             resized_w = imgW
 | |
|         else:
 | |
|             resized_w = int(math.ceil(imgH * ratio))
 | |
|         resized_image = cv2.resize(img, (resized_w, imgH))
 | |
|         resized_image = resized_image.astype('float32')
 | |
|         resized_image = resized_image.transpose((2, 0, 1)) / 255
 | |
|         resized_image -= 0.5
 | |
|         resized_image /= 0.5
 | |
|         padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
 | |
| 
 | |
|         padding_im[:, :, 0:resized_w] = resized_image
 | |
|         return padding_im
 | |
| 
 | |
|     def preprocess(self, img_list):
 | |
|         img_num = len(img_list)
 | |
|         norm_img_batch = []
 | |
|         max_wh_ratio = 320/48.
 | |
|         for ino in range(img_num):
 | |
|             h, w = img_list[ino].shape[0:2]
 | |
|             wh_ratio = w * 1.0 / h
 | |
|             max_wh_ratio = max(max_wh_ratio, wh_ratio)
 | |
| 
 | |
|         for ino in range(img_num):
 | |
|             norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
 | |
|             norm_img = norm_img[np.newaxis, :]
 | |
|             norm_img_batch.append(norm_img)
 | |
|         norm_img_batch = np.concatenate(norm_img_batch)
 | |
|         norm_img_batch = norm_img_batch.copy()
 | |
| 
 | |
|         return norm_img_batch[0]
 | |
| 
 | |
|     def postprocess(self, outputs, with_score=False):
 | |
|         preds = list(outputs.values())[0]
 | |
|         try:
 | |
|             preds = preds.numpy()
 | |
|         except:
 | |
|             pass
 | |
|         preds_idx = preds.argmax(axis=2)
 | |
|         preds_prob = preds.max(axis=2)
 | |
|         text = self.label_ops.decode(
 | |
|             preds_idx, preds_prob, is_remove_duplicate=True)
 | |
|         return text
 | |
| 
 | |
| 
 | |
| from argparse import ArgumentParser, RawDescriptionHelpFormatter
 | |
| import yaml
 | |
| 
 | |
| 
 | |
| class ArgsParser(ArgumentParser):
 | |
|     def __init__(self):
 | |
|         super(ArgsParser, self).__init__(
 | |
|             formatter_class=RawDescriptionHelpFormatter)
 | |
|         self.add_argument("-c", "--config", help="configuration file to use")
 | |
|         self.add_argument(
 | |
|             "-o", "--opt", nargs='+', help="set configuration options")
 | |
| 
 | |
|     def parse_args(self, argv=None):
 | |
|         args = super(ArgsParser, self).parse_args(argv)
 | |
|         assert args.config is not None, \
 | |
|             "Please specify --config=configure_file_path."
 | |
|         args.conf_dict = self._parse_opt(args.opt, args.config)
 | |
|         print("args config:", args.conf_dict)
 | |
|         return args
 | |
| 
 | |
|     def _parse_helper(self, v):
 | |
|         if v.isnumeric():
 | |
|             if "." in v:
 | |
|                 v = float(v)
 | |
|             else:
 | |
|                 v = int(v)
 | |
|         elif v == "True" or v == "False":
 | |
|             v = (v == "True")
 | |
|         return v
 | |
| 
 | |
|     def _parse_opt(self, opts, conf_path):
 | |
|         f = open(conf_path)
 | |
|         config = yaml.load(f, Loader=yaml.Loader)
 | |
|         if not opts:
 | |
|             return config
 | |
|         for s in opts:
 | |
|             s = s.strip()
 | |
|             k, v = s.split('=')
 | |
|             v = self._parse_helper(v)
 | |
|             print(k, v, type(v))
 | |
|             cur = config
 | |
|             parent = cur
 | |
|             for kk in k.split("."):
 | |
|                 if kk not in cur:
 | |
|                     cur[kk] = {}
 | |
|                     parent = cur
 | |
|                     cur = cur[kk]
 | |
|                 else:
 | |
|                     parent = cur
 | |
|                     cur = cur[kk]
 | |
|             parent[k.split(".")[-1]] = v
 | |
|         return config
 | 
