mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	 58a5c0b35d
			
		
	
	
		58a5c0b35d
		
			
		
	
	
	
	
		
			
			* support min_area_rect crop * add check_install * fix requirement.txt * fix check_install * add lanms-neo for drrg * fix * fix doc
		
			
				
	
	
		
			116 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # SAST
 | ||
| 
 | ||
| - [1. 算法简介](#1)
 | ||
| - [2. 环境配置](#2)
 | ||
| - [3. 模型训练、评估、预测](#3)
 | ||
|     - [3.1 训练](#3-1)
 | ||
|     - [3.2 评估](#3-2)
 | ||
|     - [3.3 预测](#3-3)
 | ||
| - [4. 推理部署](#4)
 | ||
|     - [4.1 Python推理](#4-1)
 | ||
|     - [4.2 C++推理](#4-2)
 | ||
|     - [4.3 Serving服务化部署](#4-3)
 | ||
|     - [4.4 更多推理部署](#4-4)
 | ||
| - [5. FAQ](#5)
 | ||
| 
 | ||
| <a name="1"></a>
 | ||
| ## 1. 算法简介
 | ||
| 
 | ||
| 论文信息:
 | ||
| > [A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning](https://arxiv.org/abs/1908.05498)
 | ||
| > Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming
 | ||
| > ACM MM, 2019
 | ||
| 
 | ||
| 在ICDAR2015文本检测公开数据集上,算法复现效果如下:
 | ||
| 
 | ||
| |模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
 | ||
| | --- | --- | --- | --- | --- | --- | --- |
 | ||
| |SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_icdar15.yml](../../configs/det/det_r50_vd_sast_icdar15.yml)|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
 | ||
| 
 | ||
| 
 | ||
| 在Total-text文本检测公开数据集上,算法复现效果如下:
 | ||
| 
 | ||
| |模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
 | ||
| | --- | --- | --- | --- | --- | --- | --- |
 | ||
| |SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_totaltext.yml](../../configs/det/det_r50_vd_sast_totaltext.yml)|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
 | ||
| 
 | ||
| 
 | ||
| <a name="2"></a>
 | ||
| ## 2. 环境配置
 | ||
| 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
 | ||
| 
 | ||
| 
 | ||
| <a name="3"></a>
 | ||
| ## 3. 模型训练、评估、预测
 | ||
| 
 | ||
| 请参考[文本检测训练教程](./detection.md)。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
 | ||
| 
 | ||
| 
 | ||
| <a name="4"></a>
 | ||
| ## 4. 推理部署
 | ||
| 
 | ||
| <a name="4-1"></a>
 | ||
| ### 4.1 Python推理
 | ||
| #### (1). 四边形文本检测模型(ICDAR2015)  
 | ||
| 首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
 | ||
| ```
 | ||
| python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_sast_ic15
 | ||
| 
 | ||
| ```
 | ||
| **SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
 | ||
| ```
 | ||
| python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
 | ||
| ```
 | ||
| 可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #### (2). 弯曲文本检测模型(Total-Text)  
 | ||
| 首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
 | ||
| 
 | ||
| ```
 | ||
| python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_sast_tt
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_box_type=poly`,可以执行如下命令:
 | ||
| ```
 | ||
| python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_box_type='poly'
 | ||
| ```
 | ||
| 可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| **注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
 | ||
| 
 | ||
| <a name="4-2"></a>
 | ||
| ### 4.2 C++推理
 | ||
| 
 | ||
| 暂未支持
 | ||
| 
 | ||
| <a name="4-3"></a>
 | ||
| ### 4.3 Serving服务化部署
 | ||
| 
 | ||
| 暂未支持
 | ||
| 
 | ||
| <a name="4-4"></a>
 | ||
| ### 4.4 更多推理部署
 | ||
| 
 | ||
| 暂未支持
 | ||
| 
 | ||
| <a name="5"></a>
 | ||
| ## 5. FAQ
 | ||
| 
 | ||
| 
 | ||
| ## 引用
 | ||
| 
 | ||
| ```bibtex
 | ||
| @inproceedings{wang2019single,
 | ||
|   title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
 | ||
|   author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
 | ||
|   booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
 | ||
|   pages={1277--1285},
 | ||
|   year={2019}
 | ||
| }
 | ||
| ```
 |