mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # RobustScanner
 | ||
| 
 | ||
| - [1. 算法简介](#1)
 | ||
| - [2. 环境配置](#2)
 | ||
| - [3. 模型训练、评估、预测](#3)
 | ||
|     - [3.1 训练](#3-1)
 | ||
|     - [3.2 评估](#3-2)
 | ||
|     - [3.3 预测](#3-3)
 | ||
| - [4. 推理部署](#4)
 | ||
|     - [4.1 Python推理](#4-1)
 | ||
|     - [4.2 C++推理](#4-2)
 | ||
|     - [4.3 Serving服务化部署](#4-3)
 | ||
|     - [4.4 更多推理部署](#4-4)
 | ||
| - [5. FAQ](#5)
 | ||
| 
 | ||
| <a name="1"></a>
 | ||
| ## 1. 算法简介
 | ||
| 
 | ||
| 论文信息:
 | ||
| > [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
 | ||
| > Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
 | ||
| Zhang
 | ||
| > ECCV, 2020
 | ||
| 
 | ||
| 使用MJSynth和SynthText两个合成文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
 | ||
| 
 | ||
| |模型|骨干网络|配置文件|Acc|下载链接|
 | ||
| | --- | --- | --- | --- | --- |
 | ||
| |RobustScanner|ResNet31|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_r31_robustscanner.tar)|
 | ||
| 
 | ||
| 注:除了使用MJSynth和SynthText两个文字识别数据集外,还加入了[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg)数据(提取码:627x),和部分真实数据,具体数据细节可以参考论文。
 | ||
| 
 | ||
| <a name="2"></a>
 | ||
| ## 2. 环境配置
 | ||
| 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
 | ||
| 
 | ||
| 
 | ||
| <a name="3"></a>
 | ||
| ## 3. 模型训练、评估、预测
 | ||
| 
 | ||
| 请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
 | ||
| 
 | ||
| 训练
 | ||
| 
 | ||
| 具体地,在完成数据准备后,便可以启动训练,训练命令如下:
 | ||
| 
 | ||
| ```
 | ||
| #单卡训练(训练周期长,不建议)
 | ||
| python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml
 | ||
| 
 | ||
| #多卡训练,通过--gpus参数指定卡号
 | ||
| python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r31_robustscanner.yml
 | ||
| ```
 | ||
| 
 | ||
| 评估
 | ||
| 
 | ||
| ```
 | ||
| # GPU 评估, Global.pretrained_model 为待测权重
 | ||
| python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
 | ||
| ```
 | ||
| 
 | ||
| 预测:
 | ||
| 
 | ||
| ```
 | ||
| # 预测使用的配置文件必须与训练一致
 | ||
| python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
 | ||
| ```
 | ||
| 
 | ||
| <a name="4"></a>
 | ||
| ## 4. 推理部署
 | ||
| 
 | ||
| <a name="4-1"></a>
 | ||
| ### 4.1 Python推理
 | ||
| 首先将RobustScanner文本识别训练过程中保存的模型,转换成inference model。可以使用如下命令进行转换:
 | ||
| 
 | ||
| ```
 | ||
| python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.save_inference_dir=./inference/rec_r31_robustscanner
 | ||
| ```
 | ||
| RobustScanner文本识别模型推理,可以执行如下命令:
 | ||
| 
 | ||
| ```
 | ||
| python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False
 | ||
| ```
 | ||
| 
 | ||
| <a name="4-2"></a>
 | ||
| ### 4.2 C++推理
 | ||
| 
 | ||
| 由于C++预处理后处理还未支持RobustScanner,所以暂未支持
 | ||
| 
 | ||
| <a name="4-3"></a>
 | ||
| ### 4.3 Serving服务化部署
 | ||
| 
 | ||
| 暂不支持
 | ||
| 
 | ||
| <a name="4-4"></a>
 | ||
| ### 4.4 更多推理部署
 | ||
| 
 | ||
| 暂不支持
 | ||
| 
 | ||
| <a name="5"></a>
 | ||
| ## 5. FAQ
 | ||
| 
 | ||
| 
 | ||
| ## 引用
 | ||
| 
 | ||
| ```bibtex
 | ||
| @article{2020RobustScanner,
 | ||
|   title={RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition},
 | ||
|   author={Xiaoyu Yue and Zhanghui Kuang and Chenhao Lin and Hongbin Sun and Wayne Zhang},
 | ||
|   journal={ECCV2020},
 | ||
|   year={2020},
 | ||
| }
 | ||
| ```
 | 
