mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			529 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| This code is refer from: 
 | |
| https://github.com/liyunsheng13/micronet/blob/main/backbone/micronet.py
 | |
| https://github.com/liyunsheng13/micronet/blob/main/backbone/activation.py
 | |
| """
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| import paddle.nn as nn
 | |
| 
 | |
| from ppocr.modeling.backbones.det_mobilenet_v3 import make_divisible
 | |
| 
 | |
| M0_cfgs = [
 | |
|     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r
 | |
|     [2, 1, 8, 3, 2, 2, 0, 4, 8, 2, 2, 2, 0, 1, 1],
 | |
|     [2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 2, 1, 1],
 | |
|     [2, 1, 16, 5, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1],
 | |
|     [1, 1, 32, 5, 1, 4, 4, 4, 32, 4, 4, 2, 2, 1, 1],
 | |
|     [2, 1, 64, 5, 1, 4, 8, 8, 64, 8, 8, 2, 2, 1, 1],
 | |
|     [1, 1, 96, 3, 1, 4, 8, 8, 96, 8, 8, 2, 2, 1, 2],
 | |
|     [1, 1, 384, 3, 1, 4, 12, 12, 0, 0, 0, 2, 2, 1, 2],
 | |
| ]
 | |
| M1_cfgs = [
 | |
|     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
 | |
|     [2, 1, 8, 3, 2, 2, 0, 6, 8, 2, 2, 2, 0, 1, 1],
 | |
|     [2, 1, 16, 3, 2, 2, 0, 8, 16, 4, 4, 2, 2, 1, 1],
 | |
|     [2, 1, 16, 5, 2, 2, 0, 16, 16, 4, 4, 2, 2, 1, 1],
 | |
|     [1, 1, 32, 5, 1, 6, 4, 4, 32, 4, 4, 2, 2, 1, 1],
 | |
|     [2, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 1],
 | |
|     [1, 1, 96, 3, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2],
 | |
|     [1, 1, 576, 3, 1, 6, 12, 12, 0, 0, 0, 2, 2, 1, 2],
 | |
| ]
 | |
| M2_cfgs = [
 | |
|     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
 | |
|     [2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 0, 1, 1],
 | |
|     [2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1],
 | |
|     [1, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 2, 2, 1, 1],
 | |
|     [2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 2, 2, 1, 1],
 | |
|     [1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 2, 2, 1, 2],
 | |
|     [1, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 2],
 | |
|     [2, 1, 96, 5, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2],
 | |
|     [1, 1, 128, 3, 1, 6, 12, 12, 128, 8, 8, 2, 2, 1, 2],
 | |
|     [1, 1, 768, 3, 1, 6, 16, 16, 0, 0, 0, 2, 2, 1, 2],
 | |
| ]
 | |
| M3_cfgs = [
 | |
|     # s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
 | |
|     [2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 0, 2, 0, 1],
 | |
|     [2, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 0, 2, 0, 1],
 | |
|     [1, 1, 24, 3, 2, 2, 0, 24, 24, 4, 4, 0, 2, 0, 1],
 | |
|     [2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 0, 2, 0, 1],
 | |
|     [1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 0, 2, 0, 2],
 | |
|     [1, 1, 64, 5, 1, 6, 8, 8, 48, 8, 8, 0, 2, 0, 2],
 | |
|     [1, 1, 80, 5, 1, 6, 8, 8, 80, 8, 8, 0, 2, 0, 2],
 | |
|     [1, 1, 80, 5, 1, 6, 10, 10, 80, 8, 8, 0, 2, 0, 2],
 | |
|     [1, 1, 120, 5, 1, 6, 10, 10, 120, 10, 10, 0, 2, 0, 2],
 | |
|     [1, 1, 120, 5, 1, 6, 12, 12, 120, 10, 10, 0, 2, 0, 2],
 | |
|     [1, 1, 144, 3, 1, 6, 12, 12, 144, 12, 12, 0, 2, 0, 2],
 | |
|     [1, 1, 432, 3, 1, 3, 12, 12, 0, 0, 0, 0, 2, 0, 2],
 | |
| ]
 | |
| 
 | |
| 
 | |
| def get_micronet_config(mode):
 | |
|     return eval(mode + '_cfgs')
 | |
| 
 | |
| 
 | |
| class MaxGroupPooling(nn.Layer):
 | |
|     def __init__(self, channel_per_group=2):
 | |
|         super(MaxGroupPooling, self).__init__()
 | |
|         self.channel_per_group = channel_per_group
 | |
| 
 | |
|     def forward(self, x):
 | |
|         if self.channel_per_group == 1:
 | |
|             return x
 | |
|         # max op
 | |
|         b, c, h, w = x.shape
 | |
| 
 | |
|         # reshape
 | |
|         y = paddle.reshape(x, [b, c // self.channel_per_group, -1, h, w])
 | |
|         out = paddle.max(y, axis=2)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class SpatialSepConvSF(nn.Layer):
 | |
|     def __init__(self, inp, oups, kernel_size, stride):
 | |
|         super(SpatialSepConvSF, self).__init__()
 | |
| 
 | |
|         oup1, oup2 = oups
 | |
|         self.conv = nn.Sequential(
 | |
|             nn.Conv2D(
 | |
|                 inp,
 | |
|                 oup1, (kernel_size, 1), (stride, 1), (kernel_size // 2, 0),
 | |
|                 bias_attr=False,
 | |
|                 groups=1),
 | |
|             nn.BatchNorm2D(oup1),
 | |
|             nn.Conv2D(
 | |
|                 oup1,
 | |
|                 oup1 * oup2, (1, kernel_size), (1, stride),
 | |
|                 (0, kernel_size // 2),
 | |
|                 bias_attr=False,
 | |
|                 groups=oup1),
 | |
|             nn.BatchNorm2D(oup1 * oup2),
 | |
|             ChannelShuffle(oup1), )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = self.conv(x)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class ChannelShuffle(nn.Layer):
 | |
|     def __init__(self, groups):
 | |
|         super(ChannelShuffle, self).__init__()
 | |
|         self.groups = groups
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, c, h, w = x.shape
 | |
| 
 | |
|         channels_per_group = c // self.groups
 | |
| 
 | |
|         # reshape
 | |
|         x = paddle.reshape(x, [b, self.groups, channels_per_group, h, w])
 | |
| 
 | |
|         x = paddle.transpose(x, (0, 2, 1, 3, 4))
 | |
|         out = paddle.reshape(x, [b, -1, h, w])
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class StemLayer(nn.Layer):
 | |
|     def __init__(self, inp, oup, stride, groups=(4, 4)):
 | |
|         super(StemLayer, self).__init__()
 | |
| 
 | |
|         g1, g2 = groups
 | |
|         self.stem = nn.Sequential(
 | |
|             SpatialSepConvSF(inp, groups, 3, stride),
 | |
|             MaxGroupPooling(2) if g1 * g2 == 2 * oup else nn.ReLU6())
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = self.stem(x)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class DepthSpatialSepConv(nn.Layer):
 | |
|     def __init__(self, inp, expand, kernel_size, stride):
 | |
|         super(DepthSpatialSepConv, self).__init__()
 | |
| 
 | |
|         exp1, exp2 = expand
 | |
| 
 | |
|         hidden_dim = inp * exp1
 | |
|         oup = inp * exp1 * exp2
 | |
| 
 | |
|         self.conv = nn.Sequential(
 | |
|             nn.Conv2D(
 | |
|                 inp,
 | |
|                 inp * exp1, (kernel_size, 1), (stride, 1),
 | |
|                 (kernel_size // 2, 0),
 | |
|                 bias_attr=False,
 | |
|                 groups=inp),
 | |
|             nn.BatchNorm2D(inp * exp1),
 | |
|             nn.Conv2D(
 | |
|                 hidden_dim,
 | |
|                 oup, (1, kernel_size),
 | |
|                 1, (0, kernel_size // 2),
 | |
|                 bias_attr=False,
 | |
|                 groups=hidden_dim),
 | |
|             nn.BatchNorm2D(oup))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GroupConv(nn.Layer):
 | |
|     def __init__(self, inp, oup, groups=2):
 | |
|         super(GroupConv, self).__init__()
 | |
|         self.inp = inp
 | |
|         self.oup = oup
 | |
|         self.groups = groups
 | |
|         self.conv = nn.Sequential(
 | |
|             nn.Conv2D(
 | |
|                 inp, oup, 1, 1, 0, bias_attr=False, groups=self.groups[0]),
 | |
|             nn.BatchNorm2D(oup))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DepthConv(nn.Layer):
 | |
|     def __init__(self, inp, oup, kernel_size, stride):
 | |
|         super(DepthConv, self).__init__()
 | |
|         self.conv = nn.Sequential(
 | |
|             nn.Conv2D(
 | |
|                 inp,
 | |
|                 oup,
 | |
|                 kernel_size,
 | |
|                 stride,
 | |
|                 kernel_size // 2,
 | |
|                 bias_attr=False,
 | |
|                 groups=inp),
 | |
|             nn.BatchNorm2D(oup))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = self.conv(x)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class DYShiftMax(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  inp,
 | |
|                  oup,
 | |
|                  reduction=4,
 | |
|                  act_max=1.0,
 | |
|                  act_relu=True,
 | |
|                  init_a=[0.0, 0.0],
 | |
|                  init_b=[0.0, 0.0],
 | |
|                  relu_before_pool=False,
 | |
|                  g=None,
 | |
|                  expansion=False):
 | |
|         super(DYShiftMax, self).__init__()
 | |
|         self.oup = oup
 | |
|         self.act_max = act_max * 2
 | |
|         self.act_relu = act_relu
 | |
|         self.avg_pool = nn.Sequential(nn.ReLU() if relu_before_pool == True else
 | |
|                                       nn.Sequential(), nn.AdaptiveAvgPool2D(1))
 | |
| 
 | |
|         self.exp = 4 if act_relu else 2
 | |
|         self.init_a = init_a
 | |
|         self.init_b = init_b
 | |
| 
 | |
|         # determine squeeze
 | |
|         squeeze = make_divisible(inp // reduction, 4)
 | |
|         if squeeze < 4:
 | |
|             squeeze = 4
 | |
| 
 | |
|         self.fc = nn.Sequential(
 | |
|             nn.Linear(inp, squeeze),
 | |
|             nn.ReLU(), nn.Linear(squeeze, oup * self.exp), nn.Hardsigmoid())
 | |
| 
 | |
|         if g is None:
 | |
|             g = 1
 | |
|         self.g = g[1]
 | |
|         if self.g != 1 and expansion:
 | |
|             self.g = inp // self.g
 | |
| 
 | |
|         self.gc = inp // self.g
 | |
|         index = paddle.to_tensor([range(inp)])
 | |
|         index = paddle.reshape(index, [1, inp, 1, 1])
 | |
|         index = paddle.reshape(index, [1, self.g, self.gc, 1, 1])
 | |
|         indexgs = paddle.split(index, [1, self.g - 1], axis=1)
 | |
|         indexgs = paddle.concat((indexgs[1], indexgs[0]), axis=1)
 | |
|         indexs = paddle.split(indexgs, [1, self.gc - 1], axis=2)
 | |
|         indexs = paddle.concat((indexs[1], indexs[0]), axis=2)
 | |
|         self.index = paddle.reshape(indexs, [inp])
 | |
|         self.expansion = expansion
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x_in = x
 | |
|         x_out = x
 | |
| 
 | |
|         b, c, _, _ = x_in.shape
 | |
|         y = self.avg_pool(x_in)
 | |
|         y = paddle.reshape(y, [b, c])
 | |
|         y = self.fc(y)
 | |
|         y = paddle.reshape(y, [b, self.oup * self.exp, 1, 1])
 | |
|         y = (y - 0.5) * self.act_max
 | |
| 
 | |
|         n2, c2, h2, w2 = x_out.shape
 | |
|         x2 = paddle.to_tensor(x_out.numpy()[:, self.index.numpy(), :, :])
 | |
| 
 | |
|         if self.exp == 4:
 | |
|             temp = y.shape
 | |
|             a1, b1, a2, b2 = paddle.split(y, temp[1] // self.oup, axis=1)
 | |
| 
 | |
|             a1 = a1 + self.init_a[0]
 | |
|             a2 = a2 + self.init_a[1]
 | |
| 
 | |
|             b1 = b1 + self.init_b[0]
 | |
|             b2 = b2 + self.init_b[1]
 | |
| 
 | |
|             z1 = x_out * a1 + x2 * b1
 | |
|             z2 = x_out * a2 + x2 * b2
 | |
| 
 | |
|             out = paddle.maximum(z1, z2)
 | |
| 
 | |
|         elif self.exp == 2:
 | |
|             temp = y.shape
 | |
|             a1, b1 = paddle.split(y, temp[1] // self.oup, axis=1)
 | |
|             a1 = a1 + self.init_a[0]
 | |
|             b1 = b1 + self.init_b[0]
 | |
|             out = x_out * a1 + x2 * b1
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class DYMicroBlock(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  inp,
 | |
|                  oup,
 | |
|                  kernel_size=3,
 | |
|                  stride=1,
 | |
|                  ch_exp=(2, 2),
 | |
|                  ch_per_group=4,
 | |
|                  groups_1x1=(1, 1),
 | |
|                  depthsep=True,
 | |
|                  shuffle=False,
 | |
|                  activation_cfg=None):
 | |
|         super(DYMicroBlock, self).__init__()
 | |
| 
 | |
|         self.identity = stride == 1 and inp == oup
 | |
| 
 | |
|         y1, y2, y3 = activation_cfg['dy']
 | |
|         act_reduction = 8 * activation_cfg['ratio']
 | |
|         init_a = activation_cfg['init_a']
 | |
|         init_b = activation_cfg['init_b']
 | |
| 
 | |
|         t1 = ch_exp
 | |
|         gs1 = ch_per_group
 | |
|         hidden_fft, g1, g2 = groups_1x1
 | |
|         hidden_dim2 = inp * t1[0] * t1[1]
 | |
| 
 | |
|         if gs1[0] == 0:
 | |
|             self.layers = nn.Sequential(
 | |
|                 DepthSpatialSepConv(inp, t1, kernel_size, stride),
 | |
|                 DYShiftMax(
 | |
|                     hidden_dim2,
 | |
|                     hidden_dim2,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=True if y2 == 2 else False,
 | |
|                     init_a=init_a,
 | |
|                     reduction=act_reduction,
 | |
|                     init_b=init_b,
 | |
|                     g=gs1,
 | |
|                     expansion=False) if y2 > 0 else nn.ReLU6(),
 | |
|                 ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(),
 | |
|                 ChannelShuffle(hidden_dim2 // 2)
 | |
|                 if shuffle and y2 != 0 else nn.Sequential(),
 | |
|                 GroupConv(hidden_dim2, oup, (g1, g2)),
 | |
|                 DYShiftMax(
 | |
|                     oup,
 | |
|                     oup,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=False,
 | |
|                     init_a=[1.0, 0.0],
 | |
|                     reduction=act_reduction // 2,
 | |
|                     init_b=[0.0, 0.0],
 | |
|                     g=(g1, g2),
 | |
|                     expansion=False) if y3 > 0 else nn.Sequential(),
 | |
|                 ChannelShuffle(g2) if shuffle else nn.Sequential(),
 | |
|                 ChannelShuffle(oup // 2)
 | |
|                 if shuffle and oup % 2 == 0 and y3 != 0 else nn.Sequential(), )
 | |
|         elif g2 == 0:
 | |
|             self.layers = nn.Sequential(
 | |
|                 GroupConv(inp, hidden_dim2, gs1),
 | |
|                 DYShiftMax(
 | |
|                     hidden_dim2,
 | |
|                     hidden_dim2,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=False,
 | |
|                     init_a=[1.0, 0.0],
 | |
|                     reduction=act_reduction,
 | |
|                     init_b=[0.0, 0.0],
 | |
|                     g=gs1,
 | |
|                     expansion=False) if y3 > 0 else nn.Sequential(), )
 | |
|         else:
 | |
|             self.layers = nn.Sequential(
 | |
|                 GroupConv(inp, hidden_dim2, gs1),
 | |
|                 DYShiftMax(
 | |
|                     hidden_dim2,
 | |
|                     hidden_dim2,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=True if y1 == 2 else False,
 | |
|                     init_a=init_a,
 | |
|                     reduction=act_reduction,
 | |
|                     init_b=init_b,
 | |
|                     g=gs1,
 | |
|                     expansion=False) if y1 > 0 else nn.ReLU6(),
 | |
|                 ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(),
 | |
|                 DepthSpatialSepConv(hidden_dim2, (1, 1), kernel_size, stride)
 | |
|                 if depthsep else
 | |
|                 DepthConv(hidden_dim2, hidden_dim2, kernel_size, stride),
 | |
|                 nn.Sequential(),
 | |
|                 DYShiftMax(
 | |
|                     hidden_dim2,
 | |
|                     hidden_dim2,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=True if y2 == 2 else False,
 | |
|                     init_a=init_a,
 | |
|                     reduction=act_reduction,
 | |
|                     init_b=init_b,
 | |
|                     g=gs1,
 | |
|                     expansion=True) if y2 > 0 else nn.ReLU6(),
 | |
|                 ChannelShuffle(hidden_dim2 // 4)
 | |
|                 if shuffle and y1 != 0 and y2 != 0 else nn.Sequential()
 | |
|                 if y1 == 0 and y2 == 0 else ChannelShuffle(hidden_dim2 // 2),
 | |
|                 GroupConv(hidden_dim2, oup, (g1, g2)),
 | |
|                 DYShiftMax(
 | |
|                     oup,
 | |
|                     oup,
 | |
|                     act_max=2.0,
 | |
|                     act_relu=False,
 | |
|                     init_a=[1.0, 0.0],
 | |
|                     reduction=act_reduction // 2
 | |
|                     if oup < hidden_dim2 else act_reduction,
 | |
|                     init_b=[0.0, 0.0],
 | |
|                     g=(g1, g2),
 | |
|                     expansion=False) if y3 > 0 else nn.Sequential(),
 | |
|                 ChannelShuffle(g2) if shuffle else nn.Sequential(),
 | |
|                 ChannelShuffle(oup // 2)
 | |
|                 if shuffle and y3 != 0 else nn.Sequential(), )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         identity = x
 | |
|         out = self.layers(x)
 | |
| 
 | |
|         if self.identity:
 | |
|             out = out + identity
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class MicroNet(nn.Layer):
 | |
|     """
 | |
|         the MicroNet backbone network for recognition module.
 | |
|         Args:
 | |
|             mode(str): {'M0', 'M1', 'M2', 'M3'} 
 | |
|                 Four models are proposed based on four different computational costs (4M, 6M, 12M, 21M MAdds)
 | |
|                 Default: 'M3'.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, mode='M3', **kwargs):
 | |
|         super(MicroNet, self).__init__()
 | |
| 
 | |
|         self.cfgs = get_micronet_config(mode)
 | |
| 
 | |
|         activation_cfg = {}
 | |
|         if mode == 'M0':
 | |
|             input_channel = 4
 | |
|             stem_groups = 2, 2
 | |
|             out_ch = 384
 | |
|             activation_cfg['init_a'] = 1.0, 1.0
 | |
|             activation_cfg['init_b'] = 0.0, 0.0
 | |
|         elif mode == 'M1':
 | |
|             input_channel = 6
 | |
|             stem_groups = 3, 2
 | |
|             out_ch = 576
 | |
|             activation_cfg['init_a'] = 1.0, 1.0
 | |
|             activation_cfg['init_b'] = 0.0, 0.0
 | |
|         elif mode == 'M2':
 | |
|             input_channel = 8
 | |
|             stem_groups = 4, 2
 | |
|             out_ch = 768
 | |
|             activation_cfg['init_a'] = 1.0, 1.0
 | |
|             activation_cfg['init_b'] = 0.0, 0.0
 | |
|         elif mode == 'M3':
 | |
|             input_channel = 12
 | |
|             stem_groups = 4, 3
 | |
|             out_ch = 432
 | |
|             activation_cfg['init_a'] = 1.0, 0.5
 | |
|             activation_cfg['init_b'] = 0.0, 0.5
 | |
|         else:
 | |
|             raise NotImplementedError("mode[" + mode +
 | |
|                                       "_model] is not implemented!")
 | |
| 
 | |
|         layers = [StemLayer(3, input_channel, stride=2, groups=stem_groups)]
 | |
| 
 | |
|         for idx, val in enumerate(self.cfgs):
 | |
|             s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r = val
 | |
| 
 | |
|             t1 = (c1, c2)
 | |
|             gs1 = (g1, g2)
 | |
|             gs2 = (c3, g3, g4)
 | |
|             activation_cfg['dy'] = [y1, y2, y3]
 | |
|             activation_cfg['ratio'] = r
 | |
| 
 | |
|             output_channel = c
 | |
|             layers.append(
 | |
|                 DYMicroBlock(
 | |
|                     input_channel,
 | |
|                     output_channel,
 | |
|                     kernel_size=ks,
 | |
|                     stride=s,
 | |
|                     ch_exp=t1,
 | |
|                     ch_per_group=gs1,
 | |
|                     groups_1x1=gs2,
 | |
|                     depthsep=True,
 | |
|                     shuffle=True,
 | |
|                     activation_cfg=activation_cfg, ))
 | |
|             input_channel = output_channel
 | |
|             for i in range(1, n):
 | |
|                 layers.append(
 | |
|                     DYMicroBlock(
 | |
|                         input_channel,
 | |
|                         output_channel,
 | |
|                         kernel_size=ks,
 | |
|                         stride=1,
 | |
|                         ch_exp=t1,
 | |
|                         ch_per_group=gs1,
 | |
|                         groups_1x1=gs2,
 | |
|                         depthsep=True,
 | |
|                         shuffle=True,
 | |
|                         activation_cfg=activation_cfg, ))
 | |
|                 input_channel = output_channel
 | |
|         self.features = nn.Sequential(*layers)
 | |
| 
 | |
|         self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
 | |
| 
 | |
|         self.out_channels = make_divisible(out_ch)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.features(x)
 | |
|         x = self.pool(x)
 | |
|         return x
 | 
