mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			287 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| from paddle import ParamAttr
 | |
| import paddle.nn as nn
 | |
| import paddle.nn.functional as F
 | |
| 
 | |
| __all__ = ["ResNet"]
 | |
| 
 | |
| 
 | |
| class ConvBNLayer(nn.Layer):
 | |
|     def __init__(
 | |
|             self,
 | |
|             in_channels,
 | |
|             out_channels,
 | |
|             kernel_size,
 | |
|             stride=1,
 | |
|             groups=1,
 | |
|             is_vd_mode=False,
 | |
|             act=None,
 | |
|             name=None, ):
 | |
|         super(ConvBNLayer, self).__init__()
 | |
| 
 | |
|         self.is_vd_mode = is_vd_mode
 | |
|         self._pool2d_avg = nn.AvgPool2D(
 | |
|             kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
 | |
|         self._conv = nn.Conv2D(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=1 if is_vd_mode else stride,
 | |
|             padding=(kernel_size - 1) // 2,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + "_weights"),
 | |
|             bias_attr=False)
 | |
|         if name == "conv1":
 | |
|             bn_name = "bn_" + name
 | |
|         else:
 | |
|             bn_name = "bn" + name[3:]
 | |
|         self._batch_norm = nn.BatchNorm(
 | |
|             out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name=bn_name + '_scale'),
 | |
|             bias_attr=ParamAttr(bn_name + '_offset'),
 | |
|             moving_mean_name=bn_name + '_mean',
 | |
|             moving_variance_name=bn_name + '_variance')
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         if self.is_vd_mode:
 | |
|             inputs = self._pool2d_avg(inputs)
 | |
|         y = self._conv(inputs)
 | |
|         y = self._batch_norm(y)
 | |
|         return y
 | |
| 
 | |
| 
 | |
| class BottleneckBlock(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  stride,
 | |
|                  shortcut=True,
 | |
|                  if_first=False,
 | |
|                  name=None):
 | |
|         super(BottleneckBlock, self).__init__()
 | |
| 
 | |
|         self.conv0 = ConvBNLayer(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=1,
 | |
|             act='relu',
 | |
|             name=name + "_branch2a")
 | |
|         self.conv1 = ConvBNLayer(
 | |
|             in_channels=out_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=stride,
 | |
|             act='relu',
 | |
|             name=name + "_branch2b")
 | |
|         self.conv2 = ConvBNLayer(
 | |
|             in_channels=out_channels,
 | |
|             out_channels=out_channels * 4,
 | |
|             kernel_size=1,
 | |
|             act=None,
 | |
|             name=name + "_branch2c")
 | |
| 
 | |
|         if not shortcut:
 | |
|             self.short = ConvBNLayer(
 | |
|                 in_channels=in_channels,
 | |
|                 out_channels=out_channels * 4,
 | |
|                 kernel_size=1,
 | |
|                 stride=stride,
 | |
|                 is_vd_mode=not if_first and stride[0] != 1,
 | |
|                 name=name + "_branch1")
 | |
| 
 | |
|         self.shortcut = shortcut
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv0(inputs)
 | |
| 
 | |
|         conv1 = self.conv1(y)
 | |
|         conv2 = self.conv2(conv1)
 | |
| 
 | |
|         if self.shortcut:
 | |
|             short = inputs
 | |
|         else:
 | |
|             short = self.short(inputs)
 | |
|         y = paddle.add(x=short, y=conv2)
 | |
|         y = F.relu(y)
 | |
|         return y
 | |
| 
 | |
| 
 | |
| class BasicBlock(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  stride,
 | |
|                  shortcut=True,
 | |
|                  if_first=False,
 | |
|                  name=None):
 | |
|         super(BasicBlock, self).__init__()
 | |
|         self.stride = stride
 | |
|         self.conv0 = ConvBNLayer(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=stride,
 | |
|             act='relu',
 | |
|             name=name + "_branch2a")
 | |
|         self.conv1 = ConvBNLayer(
 | |
|             in_channels=out_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=3,
 | |
|             act=None,
 | |
|             name=name + "_branch2b")
 | |
| 
 | |
|         if not shortcut:
 | |
|             self.short = ConvBNLayer(
 | |
|                 in_channels=in_channels,
 | |
|                 out_channels=out_channels,
 | |
|                 kernel_size=1,
 | |
|                 stride=stride,
 | |
|                 is_vd_mode=not if_first and stride[0] != 1,
 | |
|                 name=name + "_branch1")
 | |
| 
 | |
|         self.shortcut = shortcut
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv0(inputs)
 | |
|         conv1 = self.conv1(y)
 | |
| 
 | |
|         if self.shortcut:
 | |
|             short = inputs
 | |
|         else:
 | |
|             short = self.short(inputs)
 | |
|         y = paddle.add(x=short, y=conv1)
 | |
|         y = F.relu(y)
 | |
|         return y
 | |
| 
 | |
| 
 | |
| class ResNet(nn.Layer):
 | |
|     def __init__(self, in_channels=3, layers=50, **kwargs):
 | |
|         super(ResNet, self).__init__()
 | |
| 
 | |
|         self.layers = layers
 | |
|         supported_layers = [18, 34, 50, 101, 152, 200]
 | |
|         assert layers in supported_layers, \
 | |
|             "supported layers are {} but input layer is {}".format(
 | |
|                 supported_layers, layers)
 | |
| 
 | |
|         if layers == 18:
 | |
|             depth = [2, 2, 2, 2]
 | |
|         elif layers == 34 or layers == 50:
 | |
|             depth = [3, 4, 6, 3]
 | |
|         elif layers == 101:
 | |
|             depth = [3, 4, 23, 3]
 | |
|         elif layers == 152:
 | |
|             depth = [3, 8, 36, 3]
 | |
|         elif layers == 200:
 | |
|             depth = [3, 12, 48, 3]
 | |
|         num_channels = [64, 256, 512,
 | |
|                         1024] if layers >= 50 else [64, 64, 128, 256]
 | |
|         num_filters = [64, 128, 256, 512]
 | |
| 
 | |
|         self.conv1_1 = ConvBNLayer(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=32,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             act='relu',
 | |
|             name="conv1_1")
 | |
|         self.conv1_2 = ConvBNLayer(
 | |
|             in_channels=32,
 | |
|             out_channels=32,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             act='relu',
 | |
|             name="conv1_2")
 | |
|         self.conv1_3 = ConvBNLayer(
 | |
|             in_channels=32,
 | |
|             out_channels=64,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             act='relu',
 | |
|             name="conv1_3")
 | |
|         self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
 | |
| 
 | |
|         self.block_list = []
 | |
|         if layers >= 50:
 | |
|             for block in range(len(depth)):
 | |
|                 shortcut = False
 | |
|                 for i in range(depth[block]):
 | |
|                     if layers in [101, 152, 200] and block == 2:
 | |
|                         if i == 0:
 | |
|                             conv_name = "res" + str(block + 2) + "a"
 | |
|                         else:
 | |
|                             conv_name = "res" + str(block + 2) + "b" + str(i)
 | |
|                     else:
 | |
|                         conv_name = "res" + str(block + 2) + chr(97 + i)
 | |
| 
 | |
|                     if i == 0 and block != 0:
 | |
|                         stride = (2, 1)
 | |
|                     else:
 | |
|                         stride = (1, 1)
 | |
|                     bottleneck_block = self.add_sublayer(
 | |
|                         'bb_%d_%d' % (block, i),
 | |
|                         BottleneckBlock(
 | |
|                             in_channels=num_channels[block]
 | |
|                             if i == 0 else num_filters[block] * 4,
 | |
|                             out_channels=num_filters[block],
 | |
|                             stride=stride,
 | |
|                             shortcut=shortcut,
 | |
|                             if_first=block == i == 0,
 | |
|                             name=conv_name))
 | |
|                     shortcut = True
 | |
|                     self.block_list.append(bottleneck_block)
 | |
|                 self.out_channels = num_filters[block] * 4
 | |
|         else:
 | |
|             for block in range(len(depth)):
 | |
|                 shortcut = False
 | |
|                 for i in range(depth[block]):
 | |
|                     conv_name = "res" + str(block + 2) + chr(97 + i)
 | |
|                     if i == 0 and block != 0:
 | |
|                         stride = (2, 1)
 | |
|                     else:
 | |
|                         stride = (1, 1)
 | |
| 
 | |
|                     basic_block = self.add_sublayer(
 | |
|                         'bb_%d_%d' % (block, i),
 | |
|                         BasicBlock(
 | |
|                             in_channels=num_channels[block]
 | |
|                             if i == 0 else num_filters[block],
 | |
|                             out_channels=num_filters[block],
 | |
|                             stride=stride,
 | |
|                             shortcut=shortcut,
 | |
|                             if_first=block == i == 0,
 | |
|                             name=conv_name))
 | |
|                     shortcut = True
 | |
|                     self.block_list.append(basic_block)
 | |
|                 self.out_channels = num_filters[block]
 | |
|         self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv1_1(inputs)
 | |
|         y = self.conv1_2(y)
 | |
|         y = self.conv1_3(y)
 | |
|         y = self.pool2d_max(y)
 | |
|         for block in self.block_list:
 | |
|             y = block(y)
 | |
|         y = self.out_pool(y)
 | |
|         return y
 | 
