mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			70 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import math
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| 
 | |
| import math
 | |
| from paddle.nn.initializer import TruncatedNormal, Constant, Normal
 | |
| ones_ = Constant(value=1.)
 | |
| zeros_ = Constant(value=0.)
 | |
| 
 | |
| 
 | |
| class CT_Head(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  hidden_dim,
 | |
|                  num_classes,
 | |
|                  loss_kernel=None,
 | |
|                  loss_loc=None):
 | |
|         super(CT_Head, self).__init__()
 | |
|         self.conv1 = nn.Conv2D(
 | |
|             in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
 | |
|         self.bn1 = nn.BatchNorm2D(hidden_dim)
 | |
|         self.relu1 = nn.ReLU()
 | |
| 
 | |
|         self.conv2 = nn.Conv2D(
 | |
|             hidden_dim, num_classes, kernel_size=1, stride=1, padding=0)
 | |
| 
 | |
|         for m in self.sublayers():
 | |
|             if isinstance(m, nn.Conv2D):
 | |
|                 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
 | |
|                 normal_ = Normal(mean=0.0, std=math.sqrt(2. / n))
 | |
|                 normal_(m.weight)
 | |
|             elif isinstance(m, nn.BatchNorm2D):
 | |
|                 zeros_(m.bias)
 | |
|                 ones_(m.weight)
 | |
| 
 | |
|     def _upsample(self, x, scale=1):
 | |
|         return F.upsample(x, scale_factor=scale, mode='bilinear')
 | |
| 
 | |
|     def forward(self, f, targets=None):
 | |
|         out = self.conv1(f)
 | |
|         out = self.relu1(self.bn1(out))
 | |
|         out = self.conv2(out)
 | |
| 
 | |
|         if self.training:
 | |
|             out = self._upsample(out, scale=4)
 | |
|             return {'maps': out}
 | |
|         else:
 | |
|             score = F.sigmoid(out[:, 0, :, :])
 | |
|             return {'maps': out, 'score': score}
 | 
