mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	 24ff4def48
			
		
	
	
		24ff4def48
		
			
		
	
	
	
	
		
			
			* support min_area_rect crop * add check_install * fix requirement.txt * fix check_install * add lanms-neo for drrg * fix * fix doc * fix * support set gpu_id when inference * fix #8855 * fix #8855 * opt slim doc * fix doc bug * rename * rename
		
			
				
	
	
		
			155 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import math
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| from ppocr.modeling.backbones.det_mobilenet_v3 import ConvBNLayer
 | |
| 
 | |
| 
 | |
| def get_bias_attr(k):
 | |
|     stdv = 1.0 / math.sqrt(k * 1.0)
 | |
|     initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
 | |
|     bias_attr = ParamAttr(initializer=initializer)
 | |
|     return bias_attr
 | |
| 
 | |
| 
 | |
| class Head(nn.Layer):
 | |
|     def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs):
 | |
|         super(Head, self).__init__()
 | |
| 
 | |
|         self.conv1 = nn.Conv2D(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=in_channels // 4,
 | |
|             kernel_size=kernel_list[0],
 | |
|             padding=int(kernel_list[0] // 2),
 | |
|             weight_attr=ParamAttr(),
 | |
|             bias_attr=False)
 | |
|         self.conv_bn1 = nn.BatchNorm(
 | |
|             num_channels=in_channels // 4,
 | |
|             param_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.Constant(value=1.0)),
 | |
|             bias_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.Constant(value=1e-4)),
 | |
|             act='relu')
 | |
| 
 | |
|         self.conv2 = nn.Conv2DTranspose(
 | |
|             in_channels=in_channels // 4,
 | |
|             out_channels=in_channels // 4,
 | |
|             kernel_size=kernel_list[1],
 | |
|             stride=2,
 | |
|             weight_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.KaimingUniform()),
 | |
|             bias_attr=get_bias_attr(in_channels // 4))
 | |
|         self.conv_bn2 = nn.BatchNorm(
 | |
|             num_channels=in_channels // 4,
 | |
|             param_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.Constant(value=1.0)),
 | |
|             bias_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.Constant(value=1e-4)),
 | |
|             act="relu")
 | |
|         self.conv3 = nn.Conv2DTranspose(
 | |
|             in_channels=in_channels // 4,
 | |
|             out_channels=1,
 | |
|             kernel_size=kernel_list[2],
 | |
|             stride=2,
 | |
|             weight_attr=ParamAttr(
 | |
|                 initializer=paddle.nn.initializer.KaimingUniform()),
 | |
|             bias_attr=get_bias_attr(in_channels // 4), )
 | |
| 
 | |
|     def forward(self, x, return_f=False):
 | |
|         x = self.conv1(x)
 | |
|         x = self.conv_bn1(x)
 | |
|         x = self.conv2(x)
 | |
|         x = self.conv_bn2(x)
 | |
|         if return_f is True:
 | |
|             f = x
 | |
|         x = self.conv3(x)
 | |
|         x = F.sigmoid(x)
 | |
|         if return_f is True:
 | |
|             return x, f
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DBHead(nn.Layer):
 | |
|     """
 | |
|     Differentiable Binarization (DB) for text detection:
 | |
|         see https://arxiv.org/abs/1911.08947
 | |
|     args:
 | |
|         params(dict): super parameters for build DB network
 | |
|     """
 | |
| 
 | |
|     def __init__(self, in_channels, k=50, **kwargs):
 | |
|         super(DBHead, self).__init__()
 | |
|         self.k = k
 | |
|         self.binarize = Head(in_channels, **kwargs)
 | |
|         self.thresh = Head(in_channels, **kwargs)
 | |
| 
 | |
|     def step_function(self, x, y):
 | |
|         return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
 | |
| 
 | |
|     def forward(self, x, targets=None):
 | |
|         shrink_maps = self.binarize(x)
 | |
|         if not self.training:
 | |
|             return {'maps': shrink_maps}
 | |
| 
 | |
|         threshold_maps = self.thresh(x)
 | |
|         binary_maps = self.step_function(shrink_maps, threshold_maps)
 | |
|         y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
 | |
|         return {'maps': y}
 | |
| 
 | |
| 
 | |
| class LocalModule(nn.Layer):
 | |
|     def __init__(self, in_c, mid_c, use_distance=True):
 | |
|         super(self.__class__, self).__init__()
 | |
|         self.last_3 = ConvBNLayer(in_c + 1, mid_c, 3, 1, 1, act='relu')
 | |
|         self.last_1 = nn.Conv2D(mid_c, 1, 1, 1, 0)
 | |
| 
 | |
|     def forward(self, x, init_map, distance_map):
 | |
|         outf = paddle.concat([init_map, x], axis=1)
 | |
|         # last Conv
 | |
|         out = self.last_1(self.last_3(outf))
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class PFHeadLocal(DBHead):
 | |
|     def __init__(self, in_channels, k=50, mode='small', **kwargs):
 | |
|         super(PFHeadLocal, self).__init__(in_channels, k, **kwargs)
 | |
|         self.mode = mode
 | |
| 
 | |
|         self.up_conv = nn.Upsample(scale_factor=2, mode="nearest", align_mode=1)
 | |
|         if self.mode == 'large':
 | |
|             self.cbn_layer = LocalModule(in_channels // 4, in_channels // 4)
 | |
|         elif self.mode == 'small':
 | |
|             self.cbn_layer = LocalModule(in_channels // 4, in_channels // 8)
 | |
| 
 | |
|     def forward(self, x, targets=None):
 | |
|         shrink_maps, f = self.binarize(x, return_f=True)
 | |
|         base_maps = shrink_maps
 | |
|         cbn_maps = self.cbn_layer(self.up_conv(f), shrink_maps, None)
 | |
|         cbn_maps = F.sigmoid(cbn_maps)
 | |
|         if not self.training:
 | |
|             return {'maps': 0.5 * (base_maps + cbn_maps), 'cbn_maps': cbn_maps}
 | |
| 
 | |
|         threshold_maps = self.thresh(x)
 | |
|         binary_maps = self.step_function(shrink_maps, threshold_maps)
 | |
|         y = paddle.concat([cbn_maps, threshold_maps, binary_maps], axis=1)
 | |
|         return {'maps': y, 'distance_maps': cbn_maps, 'cbn_maps': binary_maps}
 |