mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| 
 | |
| 
 | |
| class ConvBNLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  kernel_size,
 | |
|                  stride,
 | |
|                  padding,
 | |
|                  groups=1,
 | |
|                  if_act=True,
 | |
|                  act=None,
 | |
|                  name=None):
 | |
|         super(ConvBNLayer, self).__init__()
 | |
|         self.if_act = if_act
 | |
|         self.act = act
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=padding,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + '_weights'),
 | |
|             bias_attr=False)
 | |
| 
 | |
|         self.bn = nn.BatchNorm(
 | |
|             num_channels=out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | |
|             bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | |
|             moving_mean_name="bn_" + name + "_mean",
 | |
|             moving_variance_name="bn_" + name + "_variance")
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv(x)
 | |
|         x = self.bn(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DeConvBNLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  kernel_size,
 | |
|                  stride,
 | |
|                  padding,
 | |
|                  groups=1,
 | |
|                  if_act=True,
 | |
|                  act=None,
 | |
|                  name=None):
 | |
|         super(DeConvBNLayer, self).__init__()
 | |
|         self.if_act = if_act
 | |
|         self.act = act
 | |
|         self.deconv = nn.Conv2DTranspose(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=padding,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + '_weights'),
 | |
|             bias_attr=False)
 | |
|         self.bn = nn.BatchNorm(
 | |
|             num_channels=out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | |
|             bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | |
|             moving_mean_name="bn_" + name + "_mean",
 | |
|             moving_variance_name="bn_" + name + "_variance")
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.deconv(x)
 | |
|         x = self.bn(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class EASTFPN(nn.Layer):
 | |
|     def __init__(self, in_channels, model_name, **kwargs):
 | |
|         super(EASTFPN, self).__init__()
 | |
|         self.model_name = model_name
 | |
|         if self.model_name == "large":
 | |
|             self.out_channels = 128
 | |
|         else:
 | |
|             self.out_channels = 64
 | |
|         self.in_channels = in_channels[::-1]
 | |
|         self.h1_conv = ConvBNLayer(
 | |
|             in_channels=self.out_channels+self.in_channels[1],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_h_1")
 | |
|         self.h2_conv = ConvBNLayer(
 | |
|             in_channels=self.out_channels+self.in_channels[2],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_h_2")
 | |
|         self.h3_conv = ConvBNLayer(
 | |
|             in_channels=self.out_channels+self.in_channels[3],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_h_3")
 | |
|         self.g0_deconv = DeConvBNLayer(
 | |
|             in_channels=self.in_channels[0],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=4,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_g_0")
 | |
|         self.g1_deconv = DeConvBNLayer(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=4,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_g_1")
 | |
|         self.g2_deconv = DeConvBNLayer(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=4,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_g_2")
 | |
|         self.g3_conv = ConvBNLayer(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=3,
 | |
|             stride=1,
 | |
|             padding=1,
 | |
|             if_act=True,
 | |
|             act='relu',
 | |
|             name="unet_g_3")
 | |
| 
 | |
|     def forward(self, x):
 | |
|         f = x[::-1]
 | |
| 
 | |
|         h = f[0]
 | |
|         g = self.g0_deconv(h)
 | |
|         h = paddle.concat([g, f[1]], axis=1)
 | |
|         h = self.h1_conv(h)
 | |
|         g = self.g1_deconv(h)
 | |
|         h = paddle.concat([g, f[2]], axis=1)
 | |
|         h = self.h2_conv(h)
 | |
|         g = self.g2_deconv(h)
 | |
|         h = paddle.concat([g, f[3]], axis=1)
 | |
|         h = self.h3_conv(h)
 | |
|         g = self.g3_conv(h)
 | |
| 
 | |
|         return g | 
